Chứng minh rằng phương trình :
\(x^6-x^5+x^4-x^3+x^2-x+\frac{3}{4}=0\) vô ngiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{OH}{AH}+\frac{OI}{BI}+\frac{OK}{CK}=\frac{\frac{OH.BC}{2}}{\frac{AH.BC}{2}}+\frac{\frac{OI.AC}{2}}{\frac{BI.AC}{2}}+\frac{\frac{OK.AB}{2}}{\frac{CK.AB}{2}}\)
\(=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{COA}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)
Ta có \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{1}{a+b+c}-\frac{1}{c}=\frac{c-\left(a+b+c\right)}{c\left(a+b+c\right)}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\) \(\hept{\begin{cases}a+b=0\\b+c=0\\c+a\end{cases}}=0\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}\Leftrightarrow\hept{\begin{cases}a^3=-b^3\\b^3=-c^3\\c^3=-a^3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^3+b^3=0\\b^3+c^3=0\\c^3+a^3=0\end{cases}}}\)
(ko có kí hiệu hoặc cho 3 cái nên mk dùng kí hiệu và nhé)
Do đó \(A=\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=0\)
em mới học lớp 5 nên ko giúp đc gì, mong chị tha lỗi. chúc chị học giỏi nha
Thánh viết đề.
Sửa đề: Tìm Max của :
\(N=2004-x^2-2y^2-2xy+6y\)
\(=-\left(x^2+2xy+y^2\right)-\left(y^2-6y+9\right)+2013\)
\(=2013-\left(x+y\right)^2-\left(y-3\right)^2\le2013\)
Ta có:
x2y + y2z + z2x + zx2 + yz2 + xy2 - x3 - y3 - z3 > 0
\(\Leftrightarrow\)(x2y + zx2 - x3) + (y2z + xy2 - y3) + (z2x + z2y - z3) > 0
\(\Leftrightarrow\)x2(y + z - x) + y2(z + x - y) + z2(x + y - z) > 0 (đúng)
Vì x,y,z là 3 cạnh của tam giác nên tổng 2 cạnh lớn hơn cạnh còng lại.
mk mới học lớp 5 thôi nên ko giúp đc gì, thông cảm nha! chúc cậu học giỏi
Cô sẽ áp dụng đồng dư để chứng minh, Tuấn có thể trình bày cách của em để mọi người tìm hiểu.
\(Q=\frac{\left(2016+1\right)2016}{2}=2017.3^2.2^4.7\).
ÁP dụng định lý Fermat nhỏ: \(a^{p-1}=1\left(modp\right)\). Nhận xét rằng 2017 là số nguyên tố vì vậy
\(\left(n,2017\right)=1,\)với mọi n = 1, 2, ..., 2016.
Do đó \(n^{2016}=1\left(mod2017\right),n=1,....,2016\).
Vì vậy: \(n^{2017}=n\left(mod2017\right),n=1,2,...,2017\).
Suy ra: \(1^{2017}+2^{2017}+.....+2016^{2017}=1+2+...+2016\left(mod2017\right)\)
\(=2017.1008\left(mod2017\right)\)\(=0\left(mod2017\right)\)
Vì vậy \(1^{2016}+2^{2016}+....+2016^{2016}=0\left(mod2017\right)\).
Ta sẽ chứng minh P chia hết cho \(2^4\) .
Nhận xét rằng \(n=2k\left(k\in N\right),n=\left(2k\right)^{2017}=0\left(mod2^4\right)\).
Xét những hạng tử không chia hết cho 2 là 1, 3, 5, ....., 2015.
Áp dụng định lý Euler : \(a^{\varphi\left(n\right)}=1\left(modn\right),\left(a,n\right)=1\).
Do n = 1, 3, 5, ...., 2015 thì \(\left(n,2^4\right)=1\)( Ước chung lớn nhất bằng 1) , \(\varphi\left(16\right)=8\) nên :
\(n^{2017}=n^{8.252+1}=n\left(n^8\right)^{252}=n\left(mod2^4\right)\)( Do \(n^8=1\left(mod2^4\right)\).
Vì vậy : \(1^{2017}+3^{2017}+...+2015^{2017}=1+3+...2015\left(mod2^4\right)\)
\(=2016.504\left(mod2^4\right)\)
\(=0\left(mod2^4\right)\).
Vì vậy \(1^{2017}+2^{2017}+.....+2016^{2017}=0\left(mod2^4\right)\)
Những số còn lại là \(3^2,7\)ta chứng minh tương tự.
Ta có:
\(\frac{ab}{a+b}\le\frac{\left(a+b\right)^2}{4\left(a+b\right)}=\frac{a+b}{4}\) (1)
Tương tự ta có:
\(\hept{\begin{cases}\frac{bc}{b+c}\le\frac{b+c}{4}\\\frac{ca}{c+a}\le\frac{c+a}{4}\end{cases}}\)
Cộng 3 cái trên vế theo vế ta được
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}\)
xin lỗi chị em mới học lớp 5 nên ko biết
Chúc chị luôn luôn học giỏi
(=^.^=) (>^.^<)
Ta có:
\(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)
\(\Leftrightarrow13b^2-26b-12a=0\)
\(\Leftrightarrow12\left(a+b\right)=13b^2-14b\)
\(\Leftrightarrow a+b=\frac{13b^2-14b}{12}\)
\(\Leftrightarrow a+b=b^2-b+\frac{b^2-2b}{12}=b^2-b+\frac{b\left(b-2\right)}{12}\)
Dễ thấy b phải là số chẵn (1)
để \(\frac{b\left(b-2\right)}{2.2.3}\) nguyên thì
\(\Rightarrow\orbr{\begin{cases}b⋮3\\b-2⋮3\end{cases}}\)(2)
Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}b=6k\\b-2=6k\end{cases}\left(k\ge1\right)}\)
Với \(b=6k\) thế vào ta được
\(a+b=\frac{13\left(6k\right)^2-14.\left(6k\right)}{12}=36k^2-7k\)
Dễ thấy hàm số \(f\left(k\right)=39k^2-7k\) là hàm đồng biết với \(k\ge1\)
Từ đây ta có a + b nhỏ nhất khi k nhơ nhất hay \(k=1\)
\(\Rightarrow\hept{\begin{cases}b=6\\a=26\\a+b=32\end{cases}}\)
Tương tự cho trường hợp \(b-2=6k\) sẽ tìm được GTNN của a + b
PS: Vì m thích làm sự đơn điệu của hàm số thôi. Nếu các b có cách khác thì cứ làm cho gọn nhé :)
+) Nếu x<0 ta có
x^6>0, x^5<0, x^4>0, x^3<0,x^2>0, x<0=>x^6-x^5+x^4-x^3+x^2-x > 0=>x^6-x^5+x^4-x^3+x^2-x+3/4>0(trái với đề bài)
+)Nếu x > hoặc =0 thì x^6>x^5, x^4>x^3, x^2>x, 3/4>0 =>x^6-x^5+x^4-x^3+x^2-x+3/4>0(trái với đề bài)
Vậy phương trình trên vô nghiệm