Cho \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\). Chứng minh B<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b, c là 3 cạnh tam giác nên a, b, c >0 và a <b+c ; b< c+a, c < a+b
Dùng bđt với x, y > 0 ; x< y( tức x/y < 1) ta có x /y < x +m < y+m :
ta có a>0 ; b+c>0 và a < b+c => a/ b+c < a +a/a+b+c = 2a/a+b+c
tương tự b/c+a < 2b/a+b+c ; c/a+b <2c/a+b+c
Cộng từng vế 3 bđt trên sẽ ra bn nhé.
tớ biết tớ ....................................................................chết liền!
Giả sử chỉ có hữu hạn số nguyên tố là p1, p2, ..., pn trong đó pn là số lớn nhất trong các số nguyên tố.
Xét số A = p1p2 ... pn +1 thì A chia cho mỗi số nguyên tố pk (1=<k=<n) đều dư 1 (1).
Mặt khác A là hợp số ( vì nó lớn hơn số nguyên tố lớn nhất là pn) do đó A phải chia hết cho một số nguyên tố nào đó, tức là A chia hết cho một trong các số pk, mâu thuẫn với (1).
Vậy không có hữu hạn số nguyên tố.