Cho a,b,c là các số thực dương thoả mãn \(ab+bc+ca=1\) . Chứng minh rằng:
\(\left(a^2+2b^2+3\right)\left(b^2+2c^2+3\right)\left(c^2+2a^2+3\right)\ge64\left(a^2+b^2+c^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^4+4x^3+10x^2+12x=x^4+4x^2+9+4x^3+12x+6x^2-9\)
<=>\(A=x^4+4x^2+9+4x^3+12x+6x^2-9\)
<=>\(A=\left(x^2\right)^2+\left(2x\right)^2+3^2+2.x^2.2x+2.2x.3+2.x^2.3-9\)
<=>\(A=\left(x^2+2x+3\right)^2-9\)
<=>\(A=\left[\left(x+1\right)^2+2\right]^2-9\)
Vì \(\left(x+1\right)^2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge2\Leftrightarrow\left[\left(x+1\right)^2+2\right]^2\ge4\)\(\Leftrightarrow A=\left[\left(x+1\right)^2+2\right]^2-9\ge-5\)
=>Amin=-5 <=> x=-1
Vậy Amin=5 tại x=-1
\(\frac{x}{3}=\frac{y}{4}\)
\(\Rightarrow4x=3y\)
\(\Rightarrow\frac{x}{y}=\frac{3}{4}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=4\\y=-4\end{cases}}\)
a/ Vì BM và CQ lần lượt là tia phân giác ngoài của các tia phân giác trong góc B,C nên góc MBN = góc PCQ = 90 độ
Xét tam giác AEN và tam giác BEM có AE = EB ; góc BEM = góc AEN (đối đỉnh) , góc MBE = góc EAN (cùng phụ góc ABN)
=> Tam giác AEN = tam giác BEM (c.g.c) => EM = EN
Suy ra AMBN là hình bình hành vì tứ giác này có hai đường chéo cắt nhau tại trung điểm mỗi đường
Mà có một góc bằng 90 độ => AMBN là hình chữ nhật
Chứng minh tương tự với tứ giác APCQ
b/ Dễ dàng chứng minh được EF là đường trung bình tam giác ABC => EF // BC (1)
Vì AMBN là hình chữ nhật mà E là giao điểm của hai đường chéo nên M,E,N thẳng hàng (2)
Tương tự APCQ là hình chữ nhật nên P,F,Q thẳng hàng (3)
Theo tính chất hình chữ nhật thì góc ENB góc EBN = góc NBC => MN // BC (4)
Tương tự, ta có PQ // BC (5)
Từ (1) , (2) , (3) , (4) , (5) suy ra M,N,P,Q,E,F thẳng hàng. (Áp dụng tiên đề Ơ-clit)
Gọi d là đường trung bình của tam giác ABC cắt AB,AC lần lượt tại P và Q.Gọi K là giao điểm của đường cao AH' của tam giác ABC và d
=> AH' vuông góc với d
Từ I kẻ IH vuông góc với BC tại H
Ta suy ra IHH'K là hình chữ nhật vì có ba góc bằng 90 độ => IH = KH'
Mà theo tính chất đường trung bình ta dễ dàng suy ra \(KH'=\frac{1}{2}AH'\) không đổi
Vậy \(IH\)có độ lớn không đổi . Mặt khác BC cố định nên suy ra khi M,N di chuyển thì I chạy trên đường thẳng d được giới hạn bởi PQ
Tập hợp điểm I là : \(I\in PQ\)
1)(5-x2).(x4+5x2+25)
2)15.(x-1)-(3x-1)
3)(x2-2)2
4)36x2.(y-1)
5)(7-y).(z-x)
6)(x+3).(x+5)
7)(x-10).(x+2)
8)(x+5).(3y+1)
9)(-(y-x-3)).(y-x+3)
10)(11-x).(y+x)
11)(y-x+3)).(y+x-3)
12)(-(y+2x-5)).(y+2x+5)
13)4.(tz+y2+(-x).y-t2
14)(8-x).(y-x)
Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)
Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)
Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)
Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)
Vậy C = 1
Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1
Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)
\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)
Cách 1. Sử dụng định lí Bezout :
Vì f(x) chia hết cho g(x) nên ta có thể biểu diễn thành : \(f\left(x\right)=g\left(x\right).g'\left(x\right)\) với g'(x) là đa thức thương
hay \(f\left(x\right)=\left(x-1\right)\left(x-2\right).g'\left(x\right)\)
Khi đó , theo định lí Bezout ta có \(\hept{\begin{cases}f\left(1\right)=a+b=0\\f\left(2\right)=7+4a+2b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=0\\4a+2b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{7}{2}\\b=\frac{7}{2}\end{cases}}\)
Cách 2. Sử dụng HỆ SỐ BẤT ĐỊNH
Giả sử \(f\left(x\right)=x^3+ax^2+bx-1=\left(x^2-3x+2\right).\left(x+c\right)\)(Vì bậc cao nhất của f(x) là 3)
\(\Rightarrow x^3+ax^2+bx-1=x^3+x^2\left(c-3\right)+x\left(2-3c\right)+2c\)
Theo hệ số bất định thì \(\hept{\begin{cases}2c=-1\\2-3c=b\\c-3=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-\frac{1}{2}\\b=\frac{7}{2}\\a=-\frac{7}{2}\end{cases}}\)
Không có câu hỏi!Mà nếu hỏi tạo thành hình gì thì sẽ thành hình ngôi sao! Còn nếu hỏi có bao nhiêu góc thì sẽ có 10 góc!
\(M=\frac{\left(x^2-1\right)\left(x+1\right)+\left(y^2-1\right)\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\frac{x^3+x^2-x-1+y^3+y^2-y-1}{xy+x+y+1}\)
\(=\frac{\left(x^3+y^3\right)+\left(x^2+y^2\right)-\left(x+y\right)-2}{xy+x+y+1}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2-2xy-\left(x+y\right)-2}{xy+x+y+1}\)
\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+x^2\left(x+y\right)+y^2\left(x+y\right)-2xy\left(x+y\right)-2\left(x+y\right)-2xy-2}{xy+x+y+1}\)
\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+\left(x^2+y^2-2xy\right)\left(x+y\right)-2\left(x+y+xy+1\right)}{xy+x+y+1}\)
\(=\frac{\left(x+y-2\right)\left(x+y+xy+1\right)+\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}=x+y-2+\frac{\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}\)
x,y nguyên do đó để \(M\)nguyên thì \(\left(x-y\right)^2\left(x+y\right)\)chia hết cho \(xy+x+y+1\)
Dễ thấy \(\left(x-y\right)^2\left(x+y\right)\)không thể phân tích thành nhân tử \(xy+x+y+1\)nữa nên \(\left(x-y\right)^2\left(x+y\right)=0\)
Suy ra:
\(\hept{\begin{cases}x-y=0\\x+y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=-y\end{cases}}\)
Vậy:
\(x^2y^2-1=x^2.x^2-1=x^4-1\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)chia hết cho \(\left(x+1\right)\)
Vậy ta có đpcm
Bất đẳng thức sai với [a = 35/256, b = 5/16, c = 3921/1840 ]