Tìm các cặp số nguyên dương (x,y) thỏa mãn : 2^x+5^y là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=x^2+2y^2-2xy-3y+2x-5\)
\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-y-6\right)\)
\(=\left(x-y+1\right)^2+\left(y^2-y-\frac{24}{4}\right)\)
\(=\left(x-y+1\right)^2+\left(y^2-y+\frac{1}{4}\right)-\frac{25}{4}\)
\(=\left(x-y+1\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\forall x,y\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x-y+1=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}}\)
\(E=\left(3x-1\right)^2-4\left|3x-1\right|+5\)
\(=9x^2-6x+1-4\left|3x-1\right|+5\)
*)Xét \(x\ge\frac{1}{3}\Rightarrow3x-1\ge0\Rightarrow\left|3x-1\right|=3x-1\) thì:
\(E=9x^2-6x+1-4\left(3x-1\right)+5\)
\(=9x^2-6x+6-12x+4\)\(=9x^2-18x+10\)
\(=9x^2-18x+9+1=9\left(x^2-2x+1\right)+1\)
\(=9\left(x-1\right)^2+1\ge1\forall x\)
*)Xét \(x< \frac{1}{3}\Rightarrow3x-1< 0\Rightarrow\left|3x-1\right|=-3x+1\) thì:
\(E=9x^2-6x+1-4\left(-3x+1\right)+5\)
\(=9x^2-6x+6+12x-4=9x^2+6x+2\)
\(=9\left(x^2+\frac{2x}{3}+\frac{1}{9}\right)+1=9\left(x+\frac{1}{3}\right)^2+1\ge1\forall x\)
Ta thấy cả 2 trường hợp đều có Min=1 vậy ta chốt là Min=1 nhé
Đẳng thức xảy ra khi \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}\)
câu b) hơi dài , tôi làm cách khác
đặt /3x-1/=t
ta có E=\(t^2-4t+5=\left(t^2-4t+4\right)+1=\left(t-2\right)^2+1>=1\)
=>Min E=1 dấu "=" xảy ra khi t-2=0<=>t=2=>/3x-1/=2=>\(\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}< =>\orbr{\begin{cases}x=1\\x=-\frac{1}{3}\end{cases}}}\)
Giải phương trình chứ chứng minh cái gì
\(\frac{1}{2x-2006}+\frac{1}{3-2007x}+\frac{1}{2006x+2005}=\frac{1}{x+2}\)
\(\Leftrightarrow\left(\frac{1}{2x-2006}-\frac{1}{x+2}\right)+\left(\frac{1}{3-2007x}+\frac{1}{2006x+2005}\right)=0\)
\(\Leftrightarrow\frac{x-2008}{\left(2x-2006\right)\left(x+2\right)}+\frac{x-2008}{\left(3-2007x\right)\left(2006x-2005\right)}=0\)
\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{\left(2x-2006\right)\left(x+2\right)}+\frac{1}{\left(3-2007x\right)\left(2006x-2005\right)}\right)=0\)
\(\Leftrightarrow\left(x-2008\right)\left(2008x-1\right)\left(2005x+2003\right)=0\)
\(\Leftrightarrow x=2008;x=\frac{1}{2008};x=-\frac{2003}{2005}\)
a) \(\Delta ABH,\Delta CBA\)có \(\widehat{ABC}\)chung ;\(\widehat{AHB}=\widehat{CAB}=90^0\)nên \(\Delta ABH~\Delta CBA\left(g-g\right)\)
b) Từ câu a,ta có \(\frac{BA}{BC}=\frac{BH}{BA}\)mà \(\frac{BA}{BC}=\frac{EA}{EC}\)(tính chất đường phân giác BE của \(\Delta ABC\))\(\Rightarrow\frac{EA}{EC}=\frac{BH}{AB}\)
c) Ta có : \(\frac{BA}{BC}=\frac{BH}{BA}\Rightarrow BH=\frac{BA^2}{BC}=\frac{25}{3}\)(cm)
\(\Delta AHB\)vuông tại H có \(AH=\sqrt{AB^2-BH^2}=\sqrt{100-\frac{625}{9}}=\frac{5\sqrt{11}}{3}\)(cm) (định lí Pi-ta-go)
Ta có : \(\frac{AD}{DH}=\frac{AB}{BH}\)(tính chất đường phân giác BD của \(\Delta ABH\))
\(\Rightarrow\frac{AD}{10}=\frac{DH}{\frac{25}{3}}=\frac{AD+DH}{10+\frac{25}{3}}=\frac{5\sqrt{11}}{3}:\frac{55}{3}=\frac{1}{\sqrt{11}}\)(cm) (tính chất dãy tỉ số bằng nhau)
\(\Rightarrow AD=\frac{10}{\sqrt{11}}\left(cm\right);DH=\frac{25}{3\sqrt{11}}\left(cm\right)\)
Ái chà thời này toán học cao siêu quá còn có trường hợp bằng nhau của tam giác là góc góc :v
Do EF // AM nên \(\frac{EF}{AM}=\frac{CE}{CM}\Rightarrow EF=\frac{CE}{CM}.AM\)
Do AM // EG nên \(\frac{AM}{EG}=\frac{MB}{ME}\Rightarrow EG=\frac{BE}{MB}.AM=\frac{BE}{MC}.AM\)
Vậy nên \(EF+EG=\left(\frac{CE+BE}{MC}\right).AM=\frac{BC}{MC}.AM=2AM.\)
Câu 2/
\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)
\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)
\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)
Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)
Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.
PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.
111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)
= 111...1.(10n + 2) (n chữ số 1)
Nhận xét: 10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)
hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm
Ta có: \(\frac{a+b}{a}=\frac{a}{b}\)
\(\Leftrightarrow\frac{a}{b}-1-\frac{1}{\frac{a}{b}}=0\)
\(\Leftrightarrow\left(\frac{a}{b}\right)^2-\frac{a}{b}-1=0\)
\(\Leftrightarrow\left(\frac{a}{b}-\frac{1}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{\sqrt{5}+1}{2}\\\frac{a}{b}=\frac{-\sqrt{5}+1}{2}\end{cases}}\)
Thế \(\frac{a}{b}\) vào PT \(x^2-x-1\) ta thấy ĐPCM
ta có:
4s=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.........+k(k+1)(k+2)((k+3)-(k-1))
4s=1.2.3.4-1.2.3.0+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+........+k(k+1)(k+2)(k+3)-(k-1)k(k+1)(k+2)
4s=k(k+1)(k+2)(k+3)
ta biết rằng tích 4 số tự nhiên liên tiếp khi cộng thêm 1 luôn là 1 số chính phương
=>4s+1 là 1 số chính phương
ta co:1/1*2*3=(1/1*2-1/2*3):2
1/2*3*4=(1/1*2-1/2*3):2
...
cu nhu the cho den:
1/98*99*100=(1/98*99-1/99*100):2
suy ra : 1/1*2*3+1/2*3*4+1/3*4*5+...+1/98*99*100
=(1/1*2-1/2*3):2+(1/2*3-1/3*4):2+...+(1/98*99-1/99*100):2
=(1/1*2-1/2*3+1/2*3-1/3*4+...+1/98*99-1/99*100):2
=(1/1*2-1/99*100):2
=(1/2-1/9900)
=(4950/9000-1/9000):2
=4949/9000:2
=4949/18000
học tốt
+ Xét x > 2:
Ta có 2x hehia hết cho 8.
Xét y lẻ thì ta có 5y chia cho 8 dư 5 nên 2x + 5y chia 8 dư 5 (loại).
Từ đây y chỉ có thế là số chẵn.
Đặt y = 2k thì ta có:
2x + 52k = a2
\(\Leftrightarrow\)2x = a2 - 52k
\(\Leftrightarrow\)2x = (a - 5k)(a + 5k)
\(\Rightarrow\hept{\begin{cases}a-5^k=2^m\\a+5^k=2^n\end{cases}}\)
\(\Rightarrow a=2^{m-1}+2^{n-1}\)
Vì a lẻ nên 1 trong 2 thừa số phải là 1.
Xét \(2^{m-1}=1\)
\(\Rightarrow m=1\)
Thế ngược lên hệ trên thì ta được
\(\hept{\begin{cases}a-5^k=2\\a+5^k=2^n\end{cases}}\)
\(\Rightarrow5^k=2^{n-1}-1\)
Ta thấy VT chia cho 8 dư 5 hoặc 1 nên VP phải chia cho 8 dư 5 hoặc 1.
Từ đây suy được n = 2.
\(\Rightarrow k=0\)
\(\Rightarrow\hept{\begin{cases}y=0\\x=3\end{cases}}\left(l\right)\)
Tương tự cho trường hợp còn lại với n = 1 ta nhận thấy với x > 2 thì không có giá trị thỏa mãn bài toán.
+ Xét \(x\le2\)ta dễ dàng tìm được
\(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
wow,mới lớp 5 mà đã hỏi được bài lớp 8 kìa