\(Cho\) \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\). \(CMR:a^3+b^3+c^3=\left(a+b+c\right)^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\) a = -b hoặc b = -c hoặc c = -a
1) Nếu a = -b thì \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)
\(\Rightarrow\) \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)
Tương tự cho 2 trường hợp còn lại suy ra đpcm.

hãy đổi các lũy thừa và xét từng số một trong biểu thức để xem nó có phải là hợp số hay không và kết luận

1. Ta có:
\(P=ax^3+bx^2+25x+5ax^2+5bx+125=ax^3+\left(b+5a\right)x^2+\left(25+5b\right)x+125\)
Vậy để P = Q thì \(\hept{\begin{cases}a=1\\b+5a=0\\25+5b=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-5\end{cases}}}\)
2. Hoàn toàn tương tự.

Hình đa giác TenDaGiac1: DaGiac[B, A, 4] Hình đa giác TenDaGiac1: DaGiac[B, A, 4] Hình đa giác TenDaGiac2: DaGiac[A, C, 4] Hình đa giác TenDaGiac2: DaGiac[A, C, 4] Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h_1: Đoạn thẳng [A, C] Đoạn thẳng k: Đoạn thẳng [B, A] của Hình đa giác TenDaGiac1 Đoạn thẳng l: Đoạn thẳng [A, E] của Hình đa giác TenDaGiac1 Đoạn thẳng m: Đoạn thẳng [E, D] của Hình đa giác TenDaGiac1 Đoạn thẳng n: Đoạn thẳng [D, B] của Hình đa giác TenDaGiac1 Đoạn thẳng p: Đoạn thẳng [A, C] của Hình đa giác TenDaGiac2 Đoạn thẳng q: Đoạn thẳng [C, F] của Hình đa giác TenDaGiac2 Đoạn thẳng r: Đoạn thẳng [F, G] của Hình đa giác TenDaGiac2 Đoạn thẳng s: Đoạn thẳng [G, A] của Hình đa giác TenDaGiac2 Đoạn thẳng t: Đoạn thẳng [D, C] Đoạn thẳng a: Đoạn thẳng [B, F] Đoạn thẳng d: Đoạn thẳng [A, I] Đoạn thẳng h: Đoạn thẳng [H, I] Đoạn thẳng i_1: Đoạn thẳng [E, K] Đoạn thẳng j_1: Đoạn thẳng [G, K] Đoạn thẳng k_1: Đoạn thẳng [K, B] Đoạn thẳng l_1: Đoạn thẳng [K, C] Đoạn thẳng m_1: Đoạn thẳng [K, A] A = (0.26, 6.72) A = (0.26, 6.72) A = (0.26, 6.72) B = (-2.2, 1.98) B = (-2.2, 1.98) B = (-2.2, 1.98) C = (5.82, 1.82) C = (5.82, 1.82) C = (5.82, 1.82) Điểm E: DaGiac[B, A, 4] Điểm E: DaGiac[B, A, 4] Điểm E: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm F: DaGiac[A, C, 4] Điểm F: DaGiac[A, C, 4] Điểm F: DaGiac[A, C, 4] Điểm G: DaGiac[A, C, 4] Điểm G: DaGiac[A, C, 4] Điểm G: DaGiac[A, C, 4] Điểm H: Giao điểm của e, g Điểm H: Giao điểm của e, g Điểm H: Giao điểm của e, g Điểm K: Giao điểm của f_1, g_1 Điểm K: Giao điểm của f_1, g_1 Điểm K: Giao điểm của f_1, g_1
Vẽ hình bình hành AEKG.
Do \(\Delta KGA=\Delta BAC\Rightarrow\widehat{AKG}=\widehat{CBA}\), mà \(\widehat{AKG}=\widehat{KAE}\) (So le trong)
Vậy nên \(\widehat{CBA}=\widehat{KAE}\) (1)
Gọi H' là giao điểm của AK với BC. Khi đó ta có \(\widehat{BAH'}+\widehat{EAK}=180^o-\widehat{EAB}=90^o\) (2)
Từ (1) và (2) suy ra \(\widehat{BAH'}+\widehat{ABH'}=90^o\) hay \(AK⊥BC\) hay H' trùng H.
Vậy thì K, A, H thẳng hàng.
Tiếp theo ta chứng minh AK = BC.
Thật vậy, ta thấy \(\Delta KGA=\Delta BAC\left(c-g-c\right)\Rightarrow KA=BC\)
Ta có \(\widehat{EAK}=\widehat{ABC}\Rightarrow\widehat{EAK}+90^o=\widehat{ABC}+90^o\Rightarrow\widehat{BAK}=\widehat{DBC}\)
Vậy nên \(\Delta BAK=\Delta DBC\left(c-g-c\right)\Rightarrow\widehat{AKB}=\widehat{BCD}\)
Mà \(\widehat{AKB}+\widehat{KBC}=90^o\Rightarrow\widehat{BCD}+\widehat{KBC}=90^o\)
Suy ra \(CD⊥BK\)
Tương tự \(BF⊥AC\)
Xét tam giác KBC có KH, DC, BF là ba đường cao nên chúng đồng quy. Vậy CD, BF, AH đồng quy.

Sửa đề: \(1.1!+2.2!+...+16.16!\)
Ta có:
n.n! = (n + 1 - 1).n!
= (n + 1).n! - n!
= (n + 1)! - n!
Áp dụng vào bài toán ta được
\(\Rightarrow1.1!+2.2!+...+16.16!\)
\(=2!-1!+3!-2!+...+17!-16!\)
\(=17!-1\)
n.n!=(n+1-1)n!
=(n+1)n!-n!
=(n+1)!-n!
áp dụng vào bài
=>1.1!+2.2!+...+16.16!
=2!-1!+3!-2!+...+17!-16!
=17!-1

A B C M N H P
Cô hướng dẫn nhé.
a. Dễ thấy MN // HP nên NMPH là hình thang.
Xét tam giác vuông AHC có HN là trung tuyến ứng với cạnh huyền nên NH = HC = HA. Vậy thì tam giác NCH cân tại N
\(\Rightarrow\widehat{NHC}=\widehat{NCH}.\)
Do PM // AC nên \(\widehat{MPB}=\widehat{ACB}.\)
Vậy thì \(\widehat{NHC}=\widehat{MPB}\Rightarrow\widehat{NHP}=\widehat{MPH}\)
Vậy hình thang NMPH là hình thang cân.
b. Do NP // AB nên \(HM\perp AB\).
Lại có NMBP là hình bình hành nên NM = PB.
Vậy thì NM + HP = PB + PH = HB.
Xét tam giác AHB có HM là trung tuyến đồng thời đường cao nên nó là tam giác cân. Vậy HA = HB hay HA = MN + HP.
A B C M N
Cho tg ABC vuông tại A, AM là trung tuyến.
Kẻ MN vuông góc AB thì MN // AC. Do M là truung điểm BC nên MN là đường trung bình hay N là trung điểm AB.
Xét tam giác MAB có MN là đường cao đồng thời trung tuyến nên nó cân tại M hay MA = MB. Mà MA = MC nên ta có MA = MB = MC.
(Chính vì thế nên I là tâm đường tròn ngoại tiếp tam giác vuông ABC)

a/ \(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=x^7+x+\frac{1}{x}+\frac{1}{x^7}-\left(x+\frac{1}{x}\right)=x^7+\frac{1}{x^7}\)
b/ Ta có:
\(\left(x+\frac{1}{x}\right)^2=49\)
\(\Leftrightarrow x^2+\frac{1}{x^2}=49-2=47\)
\(\left(x+\frac{1}{x}\right)^3=343\)
\(\Leftrightarrow x^3+\frac{1}{x^3}+3\left(x+\frac{1}{x}\right)=343\)
\(\Leftrightarrow x^3+\frac{1}{x^3}=343-3.7=322\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=47.322=15134\)
\(\Leftrightarrow x^5+\frac{1}{x}+x+\frac{1}{x^5}=15134\)
\(\Leftrightarrow x^5+\frac{1}{x^5}=15134-7=15127\)
a)\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=x^7+x+\frac{1}{x}+\frac{1}{x^7}-x-\frac{1}{x}\)
=\(x^7+\frac{1}{x^7}\)
\(x+\frac{1}{x}=7\)
=>\(x\left(x+\frac{1}{x}\right)=7x\)
=>\(^{x^2-7x+1=0}\)
=>\(x=\frac{7+3\sqrt{5}}{2};x=\frac{7-3\sqrt{5}}{2}loại\)
=>\(x^5+\frac{1}{x^5}=15127\)

Không mất tính tổng quát ta giả sử: \(a\ge b\ge c\ge0\)
Đầu tiên ta chứng minh
\(\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)^2\left(b+c-a\right)+\left(c-a\right)^2\left(c+a-b\right)\ge0\left(1\right)\)
Ta xét 2 trường hợp:
TH 1: \(b+c\le a\)
\(\Leftrightarrow\hept{\begin{cases}a-c\ge b-c\\a+c-b\ge b+c-a\end{cases}}\)
\(\Rightarrow\left(a-c\right)^2\left(a+c-b\right)\ge\left(b-c\right)^2\left(b+c-a\right)\)
\(\Rightarrow\left(1\right)\)đúng
TH 2: \(a+b-c\ge a+c-b\ge b+c-a\ge0\) thì (1) đúng.
\(\Rightarrow\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)^2\left(b+c-a\right)+\left(c-a\right)^2\left(c+a-b\right)\ge0\)
\(\Leftrightarrow a^3+b^3+c^3-a^2b-a^2c-b^2a-b^2c-c^2a-c^2b+3abc\ge0\)
\(\Leftrightarrow3abc\ge\left(a^2b+a^2c-a^3\right)+\left(b^2a+b^2c-b^3\right)+\left(c^2a+c^2b-c^3\right)\)
\(\Leftrightarrow a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\le3abc\)
\(\Leftrightarrow a+b+c+3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=a+b+c\)
\(\Leftrightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=0\)
với \(\sqrt[3]{a}+\sqrt[3]{b}=0\Leftrightarrow a=-b\Leftrightarrow a^3+b^3=0\)
<=>a3+b3+c3=(a+b+c)3
cmtt với các trường hợp còn lại=>đpcm
⇔a+b+c+3(3√a+3√b)(3√b+3√c)(3√c+3√a)=a+b+c
⇔3(3√a+3√b)(3√b+3√c)(3√c+3√a)=0
với 3√a+3√b=0⇔a=−b⇔a3+b3=0
<=>a3+b3+c3=(a+b+c)3
cmtt với các trường hợp còn lại=>đpcm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~