K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2019

Cách giải giống câu này luôn.

Câu hỏi của Nguyễn Linh Chi - Toán lớp 9 - Học toán với OnlineMath

5 tháng 11 2018

ai giải giúp bạn này đi TT mik cũng muốn xem lời giải bài này 

2 tháng 12 2019

Câu 1: Đặt bt là A>0 ta có:

\(2A=3-\frac{a^2b}{2+a^2b}-\frac{b^2c}{2+b^2c}-\)\(\frac{c^2a}{2+c^2a}\)

Áp dụng bđt Cosi ta đc \(2A\ge3-\frac{1}{3}\left(\sqrt[3]{a^4b^2}+\sqrt[3]{b^4c^2}+\sqrt[3]{c^4a^2}\right)\)

\(\ge3-\frac{1}{3}\left(\frac{2ab+a^2}{3}+\frac{2bc+b^2}{3}+\frac{2ca+c^2}{3}\right)\)\(=3-\frac{1}{3}\left(\frac{\left(a+b+c\right)^2}{3}\right)=3-3\cdot\frac{1}{3}=2\)

\(\Rightarrow A\ge1\)

13 tháng 11 2019

bài này mình nhớ làm khá nhiều ở cả olm và học 24 rồi. Mà chắc nó ko hiện câu hỏi tương tự  nên làm lại 

\(\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\). Khi đó cần cm \(\frac{2a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{9}{4}\) với ab+bc+ca=1

\(VT=\)\(\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}}{2}=\frac{9}{4}\)

13 tháng 11 2019

Đổi ẩn là ra ah.

\(\left(x,y,z\right)=\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)\)

12 tháng 11 2019

ĐK để phuơng trình có 2 nghiệm: 

\(\Delta'\ge0\Leftrightarrow1^2-3+m\ge0\Leftrightarrow m\ge2\)(1)

Áp dụng định lí Viet ta có: \(x_1+x_2=2\)\(x_1.x_2=3-m\)

Vì \(x_2\) là nghiệm của pt nên: \(x^2_2-2x_2+3-m=0\)

<=> \(x^2_2-2x_2+4=m+1\)

Khi đó ta có: \(2\left(2-x_2\right)^3+\left(x_2^2-2x_2+4\right)x_2^2=16\)

<=> \(2\left(8-12x_2+6x_2^2-x_2^3\right)+\left(x_2^2-2x_2+4\right)x_2^2=16\)

<=> \(x_2\left(x_2^3-4x_2^2+16x_2-24\right)=0\)

<=> \(x_2\left(x_2-2\right)\left(x_2-2x_2+12\right)=0\)

<=> \(\orbr{\begin{cases}x_2=0\Rightarrow x_1=2\Rightarrow3-m=0\Rightarrow m=3\\x_2=2\Rightarrow x_1=0\Rightarrow3-m=0\Rightarrow m=3\end{cases}}\)( tm (1) )

Thử lại với m = 3 . Thỏa mãn.

Vậy:...

8 tháng 11 2019

Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd

\(S=ab^2+bc^2+ca^2-abc\)

WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)

\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)

Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)

WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương 

\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\) 

ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng 

8 tháng 11 2019

đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0) 

bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)

Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD 

23 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz , ta có : \(3.\left(x^4+y^4+z^4\right)\ge\left(x^2+y^2+z^2\right)^2\), do đó : \(0\ge\left(x^2+y^2+z^2\right)^2-7\left(x^2+y^2+z^2\right)+12\)

\(\Rightarrow x^2+y^2+z^2\ge3\), áp dụng BĐT Cauchy-Schwarz , ta lại có :

\(P=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}\)

\(=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Tiếp tục sử dụng BĐT Cauchy-Schwarz và kết hợp BĐT quen thuộc \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\), ta có :

\(x^2y+y^2z+z^2x\le\sqrt{\left(x^2+y^2+z^2\right).\left(x^2y^2+y^2z^2+z^2x^2\right)}\)

                                  \(\le\sqrt{\left(x^2+y^2+z^2\right).\left(\frac{\left(x^2+y^2+z^2\right)^2}{3}\right)}\)

                                   \(=\left(x^2+y^2+z^2\right).\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

Tương tự , chứng minh đc :

\(2.\left(xy^2+yz^2+zx^2\right)\le2\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}\)

\(\Rightarrow P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3.\left(x^2+y^2+z^2\right)\sqrt{\frac{\left(x^2+y^2+z^2\right)}{3}}}\)

          \(=\sqrt{\frac{x^2+y^2+z^2}{3}}\)

           \(\ge1\)

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1 nên giá trị nhỏ nhất của P là 1

6 tháng 11 2019

\(x^2-2^y=33\)

<=> \(x^2=33+2^y\)

Vì x nguyên => \(2^y\)là số tự nhiên => y là số tự nhiên 

TH1: y = 2k + 1 ; k thuộc N

=> \(x^2=33+2^{2k+1}\)

=> \(x^2=33+2.4^k\)

Có: \(4\equiv1\left(mod3\right)\)=> \(4^k\equiv1\left(mod3\right)\)=> \(2.4^k\equiv2\left(mod3\right)\)

=> \(VP:3\)dư 2

mà VT là số chính phương chia 3 không dư 2

Do đó trường hợp này loại.

TH2: y = 2k ; k thuộc N

=> Ta có pt:

\(x^2-2^{2k}=33\)

<=> \(\left(x-2^k\right)\left(x+2^k\right)=33.1=-33.\left(-1\right)=11.3=-11.\left(-3\right)\)

Vì : \(2^k>0\)=> \(x-2^k< x+2^k\)

Xảy ra 4 khả năng:

\(\hept{\begin{cases}x+2^k=33\\x-2^k=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=17\\2^k=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=17\\y=8\end{cases}}}\) thử lại tm

\(\hept{\begin{cases}x+2^k=-1\\x-2^k=-33\end{cases}\Leftrightarrow\hept{\begin{cases}x=-17\\2^k=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=8\end{cases}}}\) thử lại tm

\(\hept{\begin{cases}x+2^k=11\\x-2^k=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\2^k=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=4\end{cases}}}\)thử lại tm

\(\hept{\begin{cases}x+2^k=-3\\x-2^k=-11\end{cases}\Leftrightarrow\hept{\begin{cases}x=-7\\2^k=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-7\\y=4\end{cases}}}\)thử lại tm