K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)\)

\(=\left(\frac{2017}{c}+\frac{2017}{d}\right)\left(\frac{2017}{d}+c\right)\left(c+d\right)\left(d+\frac{2017}{c}\right)\)

\(=\frac{2017}{c^2d^2}\left(c+d\right)^2\left(cd+2017\right)^2\)

\(=\frac{2017}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(1\right)\)

Ta lại có: 

\(\left(a+b+c+d\right)^2\)

\(=\left(\frac{2017}{c}+\frac{2017}{d}+c+d\right)^2\)

\(=\frac{1}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow M=2017\)

6 tháng 10 2017

LỜI GIẢI 

a+cb+d=acbda+cb+d=a−cb−d

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a+cb+d=acbd=a+c+acb+d+bd=2a2b=ab(1)a+cb+d=a−cb−d=a+c+a−cb+d+b−d=2a2b=ab(1)

a+cb+d=acbd=a+ca+cb+db+d=2c2d=cd(1)a+cb+d=a−cb−d=a+c−a+cb+d−b+d=2c2d=cd(1)

Từ (1)(1) và (2)(2) ta có:

ab=cdab=cd

Đặt:

ab=cd=kab=cd=k {a=bkc=dk⇒{a=bkc=dk

Thay vào tính

6 tháng 10 2017

Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [C, D] Đoạn thẳng l: Đoạn thẳng [A, D] Đoạn thẳng m: Đoạn thẳng [C, F] Đoạn thẳng r: Đoạn thẳng [A, Q] Đoạn thẳng s: Đoạn thẳng [E, Q] Đoạn thẳng t: Đoạn thẳng [Q, C] Đoạn thẳng a: Đoạn thẳng [B, D] Đoạn thẳng b: Đoạn thẳng [B, F] Đoạn thẳng e: Đoạn thẳng [C, A] Đoạn thẳng f_1: Đoạn thẳng [B, E] Đoạn thẳng h_1: Đoạn thẳng [E, J] B = (-1, 0.2) B = (-1, 0.2) B = (-1, 0.2) C = (6.04, 0.2) C = (6.04, 0.2) C = (6.04, 0.2) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Giao điểm đường của h, i Điểm D: Giao điểm đường của h, i Điểm D: Giao điểm đường của h, i Điểm F: Giao điểm đường của c, l Điểm F: Giao điểm đường của c, l Điểm F: Giao điểm đường của c, l Điểm E: Giao điểm đường của n, k Điểm E: Giao điểm đường của n, k Điểm E: Giao điểm đường của n, k Điểm Q: Giao điểm đường của p, q Điểm Q: Giao điểm đường của p, q Điểm Q: Giao điểm đường của p, q Điểm I: Giao điểm đường của t, a Điểm I: Giao điểm đường của t, a Điểm I: Giao điểm đường của t, a Điểm J: Giao điểm đường của g_1, j Điểm J: Giao điểm đường của g_1, j Điểm J: Giao điểm đường của g_1, j

a) Do F đối xứng với C qua BE nên EB là đường trung trực của FC.

Vậy thì ta có ngay \(\Delta BFE=\Delta BCE\left(c-c-c\right)\Rightarrow\widehat{BFE}=\widehat{BCE}=90^o\)

Vậy thì \(\widehat{AFB}+\widehat{DFE}=90^o\)

Lại có góc DFE và góc AFQ là hai góc đối đỉnh nên \(\widehat{AFB}+\widehat{AFQ}=90^o\Rightarrow\widehat{AFB}=\widehat{AQF}\)

Vậy \(\Delta AQF\sim\Delta AFB\left(g-g\right)\)

b) Từ E kẻ \(EJ\perp QB\). Khi đó ta có EJ = BC. Gọi I là giao điểm của QC và  BD.

Do AF// JE nên  \(\Delta AQF\sim\Delta JQE\). Vậy thì \(\Delta JQE\sim\Delta DEF\left(\sim\Delta AQF\right)\)

\(\Rightarrow\frac{JE}{DF}=\frac{QE}{EF}\)

Hay \(\frac{BC}{DF}=\frac{QE}{EF}\Rightarrow\frac{BF}{DF}=\frac{QE}{EC}\left(1\right)\)  (Do BE là trung trực nên BC = BF, FE = EC)

Ta cũng đã có \(\widehat{FED}=\widehat{AFB}\Rightarrow\widehat{QEC}=\widehat{BFD}\left(2\right)\)

Từ (1) và (2) suy ra \(\Delta QEC\sim\Delta BFD\left(c-g-c\right)\)

\(\Rightarrow\widehat{FQC}=\widehat{FBD}\)

Lại có \(\widehat{BFQ}=\widehat{BFA}+\widehat{AFQ}=90^o\)

Vậy nên \(\widehat{FQB}+\widehat{QBF}=\widehat{FQC}+\widehat{CQB}+\widehat{QBF}=\widehat{CQB}+\widehat{QBD}=90^o\)

Suy ra \(\widehat{AIB}=90^o\Rightarrow QC\perp BD.\)

28 tháng 11 2016

Ta có

\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)

\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac+c+1}{ac+c+1}=1\)

28 tháng 11 2016

ôi câu hỏi hay có khác j câu này Câu hỏi của Lê Phương Thảo - Toán lớp 8 - Học toán với OnlineMath

25 tháng 9 2017

Hinh thang ABCS,day nho AB day lon CD giao diem cua 2 hinh thang cheo la O ke daon thang qua O va song song voi duong cao cua hinh thang cat AB tai M, CD tai N duong cao cua ADCD la AH.Nen MN=AH

Hinh thang ABCD can nen tam giac AOB va DOC can nen MN la trung diem cua AB va CD. OM la trung tuyen tam giac vuong AOB nen OM =1/2 AOB tuong tu co ON=1/2 CD nen MN = (AB+CD):2 Duong trung binh hinh thang cung bang (AB+CD):2 Do da duong trung binh hinh thang bang MN=AH=10cm

A B C D O M N

25 tháng 9 2017

A B C D M N E

a) Ta thấy: CD = AE (cùng bằng AB)

    ND = NA (vì N là trung điểm của AD)

=> CN = NE => N là trung điểm của CE

Vậy MN là đường trung bình của tam giác CEB => MN // EB

b) Theo câu a) MN //EB => \(\widehat{MNC}=\widehat{BEC}\) (đồng vị)

Mà tam giác ABC vuông cân tại A nên \(\widehat{BEA}=45^o\)

Vậy \(\widehat{MNC}=45^o\)

20 tháng 9 2017

Gọi nửa quãng đường là \(x\) thì cả quãng đường là \(2x\).

Thời gian người đó đ nửa quãng đường đầu là: \(\frac{x}{45}\), đi nửa quãng đường sau là \(\frac{x}{v_2}\) .

Thời gian người đó đi cả quãng đường là: \(\frac{2x}{36}\).

Vậy ta có: \(\frac{x}{45}+\frac{x}{v_2}=\frac{2x}{36}\)

   \(\Rightarrow\frac{1}{45}+\frac{1}{v_2}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{v_2}=\frac{1}{18}-\frac{1}{45}=\frac{1}{30}\)

\(\Rightarrow v_2=30\)

20 tháng 9 2017

Vận tốc trung bình trên cả đoạn đường : 

vtb=S / S2.v1+S2.v2=2.v1.v2 / v1+v2.(km/h)
Mà vtb = 8, v1 = 12 nên v2 = 6 km/h.

20 tháng 9 2017

Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\)    (1) 

Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\)   (2) 

Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\)    (Với g(x) , h(x), t(x) là các đa thức)

Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)

Theo (1) thì b - a = 5.

Ta cũng có :

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)

Theo (2) thì b + 2a = 7.

Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)

18 tháng 9 2017

A B C D E F O G H K

Trên tia đối của ED lấy điểm K sao cho E là trung điểm của DK.

Xét \(\Delta\)DAE=\(\Delta\)KBE (c.g.c) => AD=BK (2 cạnh tương ứng)

Mà AD=BC => BK=BC => \(\Delta\)BKC cân tại B => ^BCK=(1800-^KBC)/2 (1)

Lại có: ^DAE=^KBE (2 góc tương ứng) => AD//BK (2 góc so le trg bằng nhau)

hay OH//BK => ^HOG=^KBC ( Đồng vị) (2)

E là trung điểm DK; F là trung điểm DC => EF là đường trung bình \(\Delta\)DKC

=> EF//KC hay HG//KC => ^OGH=^BCK (3)

Thay (2) và (3) vào (1); ta được: ^OGH=(1800-^HOG)/2 => \(\Delta\)HOG cân tại O

=> OG=OH (đpcm)

15 tháng 9 2017

ab . cde = edcba

= (10a + b ) . (100c + 10d + e) = edcba

= 10 . (100 + 10) . (a + b + c + d + e) 

= 10 . 110 . (a + b + c + d + e)

=1100 . (a + b + c + d + e)

=> Số abcde có dạng 1100(a + b + c + d + e)

Và edcba có dạng 1100(e + d + c + b + a)

Sau đó làm tiếp tí nữa là xong! Mình mới học lớp 6 nên chỉ gợi ý cách làm cho bạn được thôi!