Bài 1 : Tìm x , y , z biết : x + 2y + 3z = \(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét x>0
Khi đó 2x chẵn, còn 3x,5x,11x đều lẻ
=>VT chẵn, VP lẻ -> vô nghiệm
- Xét x=0
Khi đó VT=20+30+50=3; VT=110=1 -> vô nghiệm
- Xét x<0
Khi đó 2x>3x>5x>11x -> vô nghiệm
Vậy pt đã cho không có nghiệm nguyên
Ta có :
\(11^x=5^x+3^x+2^x\)
\(\Rightarrow2^x+3^x+5^x=5^x+3^x+2^x\)
\(\Rightarrow2^x+3^x+5^x=11^x\)
\(\Rightarrow-11^x+5^x+3^x+2^x=0\)
\(\Rightarrow-\left(11^x-5^x-3^x-2^x\right)=0\)
\(\Rightarrow11^x-5^x-3^x-2^x=0\)
=> Tiếp đê :)
Đề như thế này hả? \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
Nếu vậy ta làm như sau :
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}-\left(x-7\right)^{x+1}.\left(x-7\right)^{10}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-7=\pm1\end{cases}}\)
\(\Leftrightarrow x=7\) hoặc \(x=8\) hoặc \(x=6\)
Vậy tập nghiệm của pt \(S=\left\{6;7;8\right\}\)
Chứng minh bằng phản chứng :
Giả sử \(a_1\ne a_2\ne a_3\). Vì vai trò của \(a_1,a_2,a_3\) là bình đẳng nên ta có thể giả sử \(a_1>a_2>a_3\), khi đó ta có
\(\frac{\left|a_1-a_2\right|}{m_1}=\frac{\left|a_2-a_3\right|}{m_2}=\frac{\left|a_3-a_1\right|}{m_3}\)
\(\Rightarrow\frac{a_1-a_2}{m_1}=\frac{a_2-a_3}{m_2}=\frac{a_1-a_3}{m_3}=\frac{a_1-a_2+a_2-a_3+a_1-a_3}{m_1+m_2+m_3}=\frac{2\left(a_1-a_3\right)}{m_1+m_2+m_3}\)
\(\Rightarrow a_1-a_3=\frac{2m_3\left(a_1-a_3\right)}{m_1+m_2+m_3}\). Vì \(a_1>a_3\) nên ta chia cả hai vế đẳng thức cho \(a_1-a_3\) được \(\frac{2m_3}{m_1+m_2+m_3}=1\Rightarrow m_1+m_2+m_3=2m_3\). Dễ thấy điều vô lí vì vế trái luôn là một số lẻ , trong khi vế phải luôn là số chẵn => mâu thuẫn. => điều giả sử sai
=> Điều phải chứng minh.
Ta có \(\frac{1}{1+2+3+..+n}=\frac{2}{n\left(n+1\right)}\)
Xét mẫu ta có
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+2016}\)
\(=2\left(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2015\times2016}\right)\)
\(=2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2\left(1-\frac{1}{2017}\right)=\frac{2\times2016}{2017}\)
Thế vào ta được
\(D=\frac{2\times2016\times2017}{2\times2016}=2017\)
Với một hình chữ nhất có chu vi không đổi thì diện tích của nó là lớn nhất khi nó là hình vuông.
Chứng minh điều này có thể phải dùng tới kiến thức về bất đẳng thức ở cấp II.
Chứng minh:
Gọi chiều dài hình chữ nhật là a; chiều rộng hình chữ nhật là b; Chi vi hình chữ nhật là C.
Ta có: \(C=2\left(a+b\right)\)
Diện tích hình chữ nhật là:\(S=a.b\)
Mà: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2+2ab-4ab\ge0\Rightarrow\left(a+b\right)^2\ge4ab\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)
\(\Rightarrow S=ab\le\frac{\left(a+b\right)^2}{4}=\frac{\left(\frac{C}{2}\right)^2}{4}=\frac{C^2}{16}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b\) hay chiều dài = chiều rộng, hay hình chữ nhật là hình vuông.
Vậy bác nông dân khoanh mảnh đất thành hình vuông thì sẽ nhận được diện tích lớn nhất (có lợi nhất).
Bài toán có thể hiểu là: Trong các hình: tròn, vuông và hình chữ nhật cùng chu vi, xét xem hình nào có diện tích lớn nhất. Ta so sánh diện tích các hình trên qua đại lượng chu vi . Gọi chu vi ( độ dài sợ dây) là C; ta có:
Svuông= C/4 xC/4= CxC/16. Để biến hình vuông thành hình chữ nhật thì phải bớt cạnh này của hình vuông và thêm vào cạnh kia của hình vuông một lượng, chẳng hạn là a, ta có chiều dài là C/4+a và chiều rộng là C/4-a; khi đó diện tích hình chữ nhật là
Schữ nhật= (C/4+a)x(C/4-a)= CxC/16- axa , vì là hình chữ nhật nên a>0, nên Schữ nhât < Svuông.
Ta lại có Stròn=3,14xCxC/4x3,14x3,14 = CxC/4x3,14 > CxC/16 Vậy Stròn> Svuông> Schữ nhật..
Kết luận: Nếu hình tròn, hình vuông và hình chữ nhật có chu bằng nhau thì diện tích hình tròn là lớn nhất, diện tích hình chữ nhật là bé nhất.
TA CÓ:
34=....1
MÀ 2020 CHIA HẾT CHO 4dư2=>32020 CÓ TẬN CÙNG LÀ 9
62=....6
MÀ 2010 CHIA HẾT CHO 2=>62010CÓ TẬN CÙNG LÀ6
92=...1
MÀ 2010 CHIA HẾT CHO2=>92010CÓ TẬN CÙNG LÀ1
124=...6
MÀ2010 CHIA HẾT CHO 4dư2=>122010CÓ TẬN CÙNG LÀ4
152=...5
MÀ 2010 CHIA HẾT CHO 2=>52010CÓ TẬN CÙNG LÀ5
184=...6
MÀ 2010 CHIA HẾT CHO 4dư2=>182010CÓ TẬN CÙNG LÀ4
CÓ:...9-...6+....1-....4+...5-....4=...1
=>chữ số tận cùng của biểu thức trên là 1
đầu tiên bạn lấy 3^2020(mod 1000)= 401
6^2010(mod 1000)=176
9^2010(mod 1000)=401
12^2010(mod 1000)=224
15^2010(mod 1000)=625
18^2010(mod 1000)=624
Ta có 401-176+401-224+625-624=406
Vậy chữ số tận cùng của biểu thức trên là : 6
Đặt \(x+2y+3z=A\)
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)
\(\Rightarrow A=\frac{2A}{2A-9}\)
\(\Rightarrow\frac{2}{2A-9}=1\)
\(\Rightarrow2A-9=2\)
\(\Rightarrow A=\frac{11}{2}\)
Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :
\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)
\(\Rightarrow8y=44y-33\)
\(\Rightarrow36y=33\)
\(\Rightarrow y=\frac{11}{12}\)
\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)
\(\Rightarrow4x=22x-33\)
\(\Rightarrow18x=33\)
\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)
\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)
\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)
Vậy ...
Cho mình bổ sung : \(TH2:A=0\)
\(\Rightarrow2x=4y=6z=0\)
\(\Rightarrow x=y=z=0\)
Vậy ....