Tìm x, y, z biết :
\(\frac{x+y+2}{y}=\frac{y+z+1}{x}=\frac{x+y+3}{z}=\frac{1}{x+y+z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Ngân Hoàng Xuân - Toán lớp 8 | Học trực tuyến
Gọi I là giao điểm của MC và OB; MC giao Ox tại N
Từ điểm I kẻ IH vuông góc với MA tại H; IK vuông góc với tia Ox tại K
Góc ^xOz=1200, phân giác Oy => ^xOy=^yOz=600
Do Ot là phân giác ^xOy => OC là phân giác góc ^NOI. Mà OC vuông góc với NI
=> Tam giác ONI cân tại O
Lại có ^NOI hay ^xOy=600 => Tam giác NOI là tam giác đều
Ta thấy tam giác NOI có 2 đường cao OC và IK => OC=IK (1)
Ta có: IH và KA vuông góc với AM => IM // KA (Quan hệ //, vuông góc)
Tương tự: IK // AH
=> IH=KA; IK=AH (t/c đoạn chắn) (2)
Từ (1) và (2) => OC=AH (*)
Do tam giác NOI đều => ^OIN=600 => ^BIM=600 (Đối đỉnh) (3)
IH//KA (cmt) => IH//ON. Mà ^ONI=600 => ^HIM=600 (4)
(3); (4) => ^BIM=^HIM
=> C/m được \(\Delta\)IBM=\(\Delta\)IHM (Cạnh huyền góc nhọn) => MB=MH
=> MA - MB = MA - MH = AH (**)
Từ (*) và (**) => MA - MB = OC (đpcm).
Chúc bạn học tốt !
=> MA - MB = MA - MH = AH (**)
Từ (*) và (**) => MA - MB = OC (đpcm).
Ta có bổ đề sau: Nếu 2 tam giác có 2 cặp cạnh bằng nhau và 2 góc xen giữa bù nhau thì diện tích 2 tam giác đó bằng nhau.
Bài toán: Cho \(\Delta\)ABC và \(\Delta\)DEF có AB=DE; AC=DF và ^BAC + ^EDF =1800. CMR: SABC=SDEF.
Trên tia đối của AC lấy điểm g sao cho AG=DF => A là trung điểm của CG (Do AC=DF)
=> SABC=SABG. (1)
^BAC+^EDF=1800 . Mà ^BAC+^BAG=1800 => ^EDF=^BAG
Dễ dàng c/m được \(\Delta\)DEF=\(\Delta\)ABG (c.g.c) => SABG=SDEF (2)
Từ (1) và (2) => SABC=SDEF.
Áp dụng vào bài toán:
Gọi giao điểm của OA' với BC; OB' với AC; OC' với AB lần lượt là I;K;H
Xét tứ giác OICK: Có ^OIC=^OKC=900 => ^IOK+^KCI=1800 hay ^A'OB'+^ACB=1800
Tương tự: ^A'OC'+^ABC=1800
^B'OC'+^BAC=1800
Xét \(\Delta\)ABC và \(\Delta\)A'O'B':
BC=OA'
^A'OB'+^ACB=1800 => SABC=SA'OB' (Theo bổ đề)
AC=OB'
Tương tự ta có: SABC=SA'OC'; SABC=SB'OC'.
=> SA'OB'=SA'OC'=SB'OC' (đpcm).
Sửa đề trong bài làm luôn nhé
\(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)
\(\Rightarrow\frac{a+2b-c}{x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}\)
\(\Rightarrow\frac{a+2b-c}{x}=\frac{2\left(2a+b+c\right)}{2y}=\frac{4b+c-4a}{z}=\frac{9a}{x+2y-z}\left(1\right)\)
\(\Rightarrow\frac{2\left(a+2b-c\right)}{2x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}=\frac{9b}{2x+y+z}\left(2\right)\)
\(\Rightarrow\frac{-4\left(a+2b-c\right)}{-4x}=\frac{4\left(2a+b+c\right)}{4y}=\frac{4b+c-4a}{z}=\frac{9c}{-4x+4y+z}\left(3\right)\)
Từ (1), (2), (3) ta có ĐPCM
Ta có \(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)
\(\Rightarrow\frac{x}{a+2b-c}=\frac{2y}{4a+2b+c}=\frac{z}{4b+c-4a}=\frac{x+2y-z}{9a}\left(1\right)\)
\(\Rightarrow\frac{2x}{2a+4b-2c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}=\frac{2x+y+z}{9b}\left(2\right)\)
\(\Rightarrow\frac{4x}{4a+8b-4c}=\frac{4y}{8a+4b+4c}=\frac{z}{4b+c-4a}=\frac{4y+z-4a}{9c}\left(3\right)\)
Từi (1),(2),(3)
còn j giải típ nha
@@@@@@@@@@@@
TA có BH=BE (gt) => tam giác BEH cân tại B
=> \(\widehat{BEH}=\widehat{BHE}\) \(\Rightarrow\widehat{ABC}=2\widehat{BHE}\) mà \(\widehat{ABC}=2\widehat{ACB}\left(gt\right)\)\(\Rightarrow\widehat{BHE}=\widehat{ACB}\)
mà\(\widehat{BHE}=\widehat{DHC}\)(2 góc đối đỉnh)\(\Rightarrow\widehat{DHC}=\widehat{DCH}\Rightarrow\Delta DHC\)cân tại D
Mặt khác\(\widehat{AHD}+\widehat{DHC}=\widehat{HAC}+\widehat{DCH}=90^o\)mà \(\widehat{DHC}=\widehat{DCH}\Rightarrow\widehat{AHD}=\widehat{HAC}\Rightarrow\Delta AHD\)cân tại D
1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3)
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13.
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên)
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13)
2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0.
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y.
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên)
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7)
3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y.
Ta đặt y1 = - y > 0.
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x.
3a. y1 ≤ x
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3)
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên)
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2)
3b. x < y1
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3)
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên)
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7)
Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2)
-------------
Kết luận: tất cả các nghiệm:
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4)
-----------
Trên tia đối của tia AM, lấy điểm I sao cho MI = MA. Khi đó ta có thể suy ra \(\Delta AMC=\Delta IMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{MCA}=\widehat{MBI}\) hay BI // AC và BI = AC.
Gọi N là giao điểm của BI và AE. Do AE vuông góc với AC nên AE cũng vuông góc với BI. Vậy thì \(\widehat{AKI}=90^o\)
Ta thấy hai góc DAE và ABI có \(DA\perp AB;AE\perp BI\) nên \(\widehat{DAE}=\widehat{ABI}\)
Vậy thì \(\Delta DAE=\Delta ABI\left(c-g-c\right)\)
\(\Rightarrow\widehat{DEA}=\widehat{AIB}\)
Kéo dài NI cắt DE tại J, AI cắt DE tại F.
Xét tam giác vuông NEJ ta có \(\widehat{NJE}+\widehat{JEN}=90^o\)
Vậy nên \(\widehat{NJE}+\widehat{JIF}=90^o\Rightarrow\widehat{JFI}=90^o\)
Hay \(AM\perp DE.\)
âu trả lời hay nhất: xét tứ giác ABDM
có ^A=90 o ( tam giác ABC vuông tại A theo gt )
^D = 90 o ( gt )
=> ^A + ^D = 180 o
=> t/g ABDM là t/g nội tiếp ( dhnb )
=> góc BAD = góc BMD ( góo nội tiếp cùng chắn cung BD )
lại có ^ BAD = 1/2 ^ BAC = 1/2 90 o = 45 o
=> ^BMD = 45 o
p/s : kham khảo
Ta có \(3f\left(2\right)-2f\left(-2\right)=5\) (1) và \(3f\left(-2\right)+2f\left(2\right)=1\) (2)
Từ (1) suy ra \(f\left(2\right)=\frac{5+2f\left(-2\right)}{3}\)
Thế vào (2) , ta có \(3f\left(-2\right)+2.\frac{5+2f\left(-2\right)}{3}=1\)
\(\Leftrightarrow\frac{9f\left(-2\right)+10+4f\left(-2\right)}{3}=1\)
\(\Leftrightarrow13f\left(-2\right)=-7\Leftrightarrow f\left(-2\right)=-\frac{7}{13}\)
Hình như đề đúng phải là: \(\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)bạn xem lại nhé :)))
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{x+y-3}{z}=\frac{\left(x+z+2\right)+\left(y+z+1\right)+\left(x+y-3\right)}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(do \(x+y+z\ne0\)).
Do đó \(\frac{1}{x+y+z}=2\)\(\Rightarrow\)\(x+y+z=0,5\)
Thay kết quả này vào đề bài ta được:
\(\frac{0,5-y+2}{y}=\frac{0,5-x+1}{x}=\frac{0,5-z-3}{z}=2\)
\(\Leftrightarrow\)\(\frac{2,5-y}{y}=\frac{1,5-x}{x}=\frac{-2,5-z}{z}=2\)\(\Leftrightarrow\)\(\frac{2,5}{y}=\frac{1,5}{x}=\frac{-2,5}{z}=3\)
Dễ dàng tính được \(y=\frac{5}{6},\)\(x=\frac{1}{2},\)\(z=\frac{-5}{6}\)
Đề lạ lạ cái chỗ \(\frac{x+y+3}{z}\)ấy. Bạn xem lại xem.