với a,b,c\(\in\)N* và S=\(\frac{a+b}{c}\)+\(\frac{b+c}{a}\)+\(\frac{a+c}{b}\). Chứng minh rằng S\(\ge\)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp :
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm)
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10)
...Sm = a1+a2+ ... + a(m)
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n)
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm)
Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.
Đặt đk ở đề bài là(*)
Vì x,y \(\in\) N* nên (x+y)^5 < 120y+3 < 120y+120x=120(x+y)
Ta có:
(x+y)^4 < 120 < 4^4
x+y < 4. Mà x+y > 2(vì x,y \(\in\) N*)
do đó:x+y=2 hoặc x+y=3
(1)x+y=2
=>x=y+1 thỏa mãn (*)
(2)x+y=3
=>x=1;y=2 hoặc x=2,y=1
x=1,y=1 thỏa mãn (*)
x=2,y=1 ko thỏa mãn (*)
Vậy x=1,y=1
và x=1,y=2
Bạn ấy làm đúng rồi
Mặc dù mình không biết nhưng mk nghĩ bạn ấy đã làm đúng
Quá xuất sắc
Ta có: a + b chẵn và a,b nguyên tố cùng nhau nên a,b là hai số lẻ
*chứng minh P chia hết cho 8
Ta có (a + b) = 2k
a - b = a + b - 2b = 2k - 2b = 2(k - b)
Với k là số chẵn thì (a + b) chia hết cho 4, (a - b) chia hết cho 2
=> P chia hết cho 8
Với k là số lẻ thì (a + b) chia hết cho 2, (a - b) chia hết cho 4
=> P chia hết cho 8
Vậy ta có P chia hết cho 8 (1)
*Chứng minh P chia hết cho 3
Vì cả a, b đều là số lẻ nên a,b chia cho 3 dư 0 hoặc dư 1
Với 1 trong 2 số a,b chia hết cho 3 thì P chia hết cho 3
Với a,b chia cho 3 dư 1 thì (a - b) chia hết cho 3
Vậy P chia hết cho 3
Từ (1) và (2) kết hợp với việc 3 và 8 là hai số nguyên tố cùng nhau thì ta => P chia hết cho 24
alibaba nguyễn: Khi chứng minh P chia hết cho 3
a; b lẻ vx có thể chia 3 dư 2 chứ; vd như 5; 17; 29; ... chẳng hạn
t nghĩ lm thế này: Câu hỏi của letienluc - Toán lớp 6 | Học trực tuyến
Cách 1: Sử dụng phương pháp giả thiết tạm.
Ta minh họa bài toán như hình vẽ dưới đây:
Giả thiết rằng có một xe thứ ba phải đi quãng đường FE dài gấp đôi quãng đường AC và vận tốc cũng gấp đôi vận tốc xe thứ nhất.
Vậy đoạn đường FE dài : 200 x 2 = 400 (km)
Vận tốc xe thứ ba là: 50 x 2 = 100 (km/h)
Vậy thì trong cũng một khoảng thời gian như xe thứ nhất đi, quãng đường còn lại để tới C của xe thứ ba gấp đôi quãng đường còn lại của xe thứ nhất để tới C.
Vậy thì hai xe thứ hai và thứ ba gặp nhau tại E.
Quãng đường xe thứ ba đi nhiều hơn xe thứ hai là:
200 + 10 = 210 (km)
Hiệu hai vận tốc là:
100 - 40 = 60 (km)
Thời gian để hai xe gặp nhau tại E hay thời gian để khoảng cách đến C của xe thứ hai gấp đôi xe thứ nhất là:
210 : 60 = 3,5 (h)
Vậy khoảng cách đến C của xe thứ hai gấp đôi xe thứ nhất lúc:
7 giờ + 3,5 giờ = 10,5 giờ = 10 giờ 30 phút.
Cách 2:
Trong cùng một khoảng thời gian, quãng đường xe thứ hai đi được bằng 4/5 lần quãng đường xe thứ nhất đi được.
Ta có hình vẽ:
Từ hình vẽ ta có : \(\frac{AB+EM}{BE}=\frac{5-4}{4}=\frac{1}{4}\Rightarrow AB+EM=\frac{1}{4}BE\)
Kẻ thêm đoạn CA' = AB ( = 10km)
Ta có AB + EM = MC + CA' = MA'
Vậy thì \(MA'=\frac{1}{4}BE\)
Lại có AA' = AC + CA' = 200 + 10 = 210 (km)
Vậy nên \(BE=\frac{210}{6}\times4=140\left(km\right)\)
Vậy thời gian để xe thứ hai đi đến E là:
140 : 50 = 3,5 (giờ)
Vậy khoảng cách đến C của xe thứ hai gấp đôi xe thứ nhất lúc:
7 giờ + 3,5 giờ = 10,5 giờ = 10 giờ 30 phút.
Câu 2/ Gọi ước chung lớn nhất của a,c là q thì ta có:
a = qa1; c = qc1 (a1, c1 nguyên tố cùng nhau).
Thay vào điều kiện ta được:
qa1b = qc1d
\(\Leftrightarrow\)a1b = c1d
\(\Rightarrow\) d\(⋮\)a1
\(\Rightarrow\)d = d1a1
Thế ngược lại ta được: b = d1c1
Từ đây ta có:
A = an + bn + cn + dn = (qa1)n + (qc1)n + (d1a1)n + (d1c1)n
= (a1 n + c1 n)(q n + d1 n)
Vậy A là hợp số
\(D=\frac{4}{1^2}+\frac{4}{3^2}+....+\frac{4}{2015^2}\)
\(D=4+2.\left(\frac{2}{3.3}+\frac{2}{5.5}+....+\frac{2}{2015.2015}\right)\)
\(D< 4+2.\left(\frac{2}{1.3}+\frac{2}{3.5}+.....+\frac{2}{2013.2015}\right)\)
\(D< 4+2.\left(1-\frac{1}{2015}\right)\)
\(D< 6\)
mink chỉ làm được vậy thôi bạn ạ, sorry
Từ E kẻ đt // cắt DN ở H
Từ B kẻ đt // cắt DN ở K
+ Có: DN//=1/2 ME (DN là đường trung bình tg CME)
MD// EH (theo ta kẻ)
=> MDHE là hbh
=> ME=DH
mà DN=1/2ME
=> NH=ND
+ Xét tg NBK:
E là trung điểm BN
EH//BK (cùng //AC theo tc hbh và ta kẻ)
=> EH là đường trung bình tg NBK
=> KH=HN
=> KH=HN=ND=1/3 AB=2cm
+ Lại có:
AD//BK (ta kẻ)
AD=2 MD (M là tđiểm AD)
BK=2 EH (tc đường tb tg)
=> AD//=BK
=> ADKB là hbh
=> DK//AB
=> GBE= góc DNE (so le trong) (3)
Từ (1), (2), (3)=> tg BEG=tg NED (gcg)
=> BG=DN=2 cm (đpcm).
Quy đồng mẫu trong tổng A:
Có 25 là luỹ thừa của 2 lớn nhất < 50. Ta chọn MSC = 25.3.5.7.9...49
Gọi a2; a3;...;a50 là các thừa số phụ tương ứng của 1/2; 1/3; ...; 1/50.
\(A=\frac{a_2+a_3+a_4+...+a_{50}}{2^5.3.5.7...49}\)
Nhận xét a2; a3;..; a31;.; a33; ...;a50 đều chứa thừa số 2 nên là các số chẵn , trừ số a32 là số lẻ nên tử số của A là số lẻ
mà mẫu số của A là số chẵn nên A tử không chia hết cho mẫu => A ko là số tự nhiên
Quy đồng mẫu trong tổng A:
Có 25 là luỹ thừa của 2 lớn nhất < 50. Ta chọn MSC = 25.3.5.7.9...49
Gọi a2; a3;...;a50 là các thừa số phụ tương ứng của 1/2; 1/3; ...; 1/50.
$A=\frac{a_2+a_3+a_4+...+a_{50}}{2^5.3.5.7...49}$A=a2+a3+a4+...+a5025.3.5.7...49
Nhận xét a2; a3;..; a31;.; a33; ...;a50 đều chứa thừa số 2 nên là các số chẵn , trừ số a32 là số lẻ nên tử số của A là số lẻ
mà mẫu số của A là số chẵn nên A tử không chia hết cho mẫu => A không là số tự nhiên
Đặt a/b=c/d (c/d là phân số tối giản ; c và d thuộc N*)
Ta có: BCNN(a;b)=300 =>a.d=300 (1)
UCLN(a;b)=15=>b:d=15(2)
Thay b=a+15 vào (2) ta được:
(a+15):d=15 <=> a+15=15d <=>a=15d-15
Thay a=15d-15 vào (1) ta được:
(15d-15)d=300 <=>15d2-15d-300=0<=>d2-d-20=0 <=> d=5(nhận) hoặc d=-4(loại)
=>a=15d-15=15.5-15=60
=>b=a+15=60+15=75
vậy,a=60 và b=75
Ta có:
\(ƯCLN\left(a,b\right)=\frac{a.b}{BCNN\left(a,b\right)}\)
=> \(15=\frac{a.b}{300}\)
=> a.b= 15.300=4500
Thay b = 15+a. Ta được:
( 15 + a ) . a = 4500
Ta thấy : 75.60=4500
Vậy a = 75 và b = 60
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố \(\Rightarrow\)n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố \(\Rightarrow\)n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
Sửa đề: chứng minh \(S\ge6\)
Ta có:
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+6\)
\(=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+6\ge6\)
\(\Rightarrow\)ĐPCM
Đây nè k cho mình nha:
Ta có \(\frac{a+b}{c}>\frac{a+b}{a+b+c}\)
\(\frac{b+c}{a}>\frac{b+c}{a+b+c}\)
\(\frac{a+c}{b}>\frac{a+c}{a+b+c}\)
Suy ra \(S>\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{a+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy S > 2