Giải phương trình nghiệm nguyên:
a, \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
b, \(x^4-2y^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{12-\frac{3}{x^2}}+\sqrt{4x^2-\frac{3}{x^2}}=4x^2\)
\(pt\Leftrightarrow\sqrt{12-\frac{3}{x^2}}-3+\sqrt{4x^2-\frac{3}{x^2}}-1=4x^2-4\)
\(\Leftrightarrow\frac{12-\frac{3}{x^2}-9}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{4x^2-\frac{3}{x^2}-1}{\sqrt{4x^2-\frac{3}{x^2}}+1}=4\left(x^2-1\right)\)
\(\Leftrightarrow\frac{\frac{3\left(x-1\right)\left(x+1\right)}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(x-1\right)\left(x+1\right)\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4\right)=0\)
Pt \(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{3}{x^2}}+3}+\frac{\frac{\left(4x^2+3\right)}{x^2}}{\sqrt{4x^2-\frac{3}{x^2}}+1}-4>0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Giải:
Giả sử \(p\) là số nguyên tố.
Từ \(a^2b^2=p\left(a^2+b^2\right)\Rightarrow a^2+b^2⋮p\) hoặc \(a⋮p\) và \(b⋮p\left(1\right)\)
\(\Rightarrow a^2b^2⋮p^2\Rightarrow p\left(a^2+b^2\right)⋮p^2\Rightarrow a^2+b^2⋮p\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow a⋮p\) và \(b⋮p\)
Từ \(a\ge p,b\ge p\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{2}{p^2}\Rightarrow\frac{1}{p}\le\frac{2}{p^2}\Rightarrow p\le2\left(3\right)\)
Từ \(a>2,b>2\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\Rightarrow p>2\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\Rightarrow\) Mâu thuẫn \(\Rightarrow p\) là hợp số (Đpcm).
Tìm số dư khi chia A= \(a^{2n}+a^n+1\) cho \(a^2+a+1\) với mọi số tự nhiên n và a thuộc Z, a khác 1.
TH1: n = 3k , k là số tự nhiên.
Có: \(A=a^{6k}+a^{3k}+1=\left(a^{6k}-1\right)+\left(a^{3k}-1\right)+3\)
\(=\left(a^{3k}-1\right)\left(a^{3k}+1\right)+\left(a^{3k}-1\right)+3=\left(a^{3k}-1\right)\left(a^{3k}+2\right)+3\)
lại có: \(a^{3k}-1=\left(a^3\right)^k-1⋮a^3-1\) và \(a^3-1⋮a^2+a+1\)
=> \(a^{3k}-1⋮a^2+a+1\)
=> \(\left(a^{3k}-1\right)\left(a^{3k}+2\right)⋮a^2+a+1\)
=> \(A:a^2+a+1\) dư 3, với mọi a khác -2; -1; 0; 1.
TH2: n = 3k + 1, k là số tự nhiên.
Có: \(A=a^{6k+2}+a^{3k+1}+1=a^2\left(a^{6k}-1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)
\(=a^2\left(a^{3k}-1\right)\left(a^{3k}+1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)
\(=\left(a^{3k}-1\right)\left[a^2\left(a^{3k}+1\right)+a\right]+\left(a^2+a+1\right)⋮a^2+a+1\)
Vì \(a^{3k}-1⋮a^2+a+1;a^2+a+1⋮a^2+a+1\)
=> \(A⋮a^2+a+1\)
hay \(A:a^2+a+1\) dư 0
TH3: n = 3k +2, k là số tự nhiên
Có: \(A=a^{6k+4}+a^{3k+2}+1=a^4\left(a^{6k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+a^2+1\right)\)
\(=a^4\left(a^{3k}+1\right)\left(a^{3k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+2a^2+1\right)-a^2\)
\(=\left(a^{3k}-1\right)\left[a^4\left(a^{3k}+1\right)+a^2\right]+\left(a^2-a+1\right)\left(a^2+a+1\right)⋮a^2+a+1\)
=> \(A:a^2+a+1\) dư 0.
Kêt luận: Với n là số tự nhiên chia hết cho 3, a là số nguyên khác -2; -1 ; 0; 1 thì A chia cho a^2 +a +1 dư 3
n là số tự nhiên không chia hết cho 3, a là số nguyên bất kì thì A chia cho a^2 +a +a dư 0.
.
Xét \(\Delta MEP\)và \(\Delta INC\)có
\(\hept{\begin{cases}\widehat{EMP}=\widehat{NIC}\\\widehat{MEP}=\widehat{INC}=90^o\end{cases}}\)
\(\Rightarrow\Delta MEP\approx\Delta NIC\)
\(\Rightarrow\frac{ME}{IN}=\frac{EP}{NC}\)
\(\Rightarrow ME.NC=IN.EP\left(1\right)\)
Tương tự ta có:
\(\Delta NEP\approx\Delta IMP\)
\(\Rightarrow\frac{NE}{IM}=\frac{EP}{MB}\)
\(\Rightarrow NE.MB=IM.EP=IN.EP\left(2\right)\)
Từ (1) và (2) \(ME.NC=NE.MB\)
\(\Rightarrow\frac{ME}{NE}=\frac{MB}{NC}\)
Mà ta có: \(\widehat{BME}=\widehat{CNE}\)
\(\Rightarrow\Delta BME\approx\Delta CNE\)
\(\Rightarrow\widehat{MEB}=\widehat{NEC}\)
\(\Rightarrow\widehat{BEP}=\widehat{CEP}\)
\(\Rightarrow EP\)là phân giác \(\widehat{BEC}\)
Bạn alibaba nguyễn nhầm phần tam giác đồng dạng rồi, tam giac NEP đồng dạng IMB mới đúng chứ
Sửa đề:
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge12\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(4x+\frac{24\left(x^3+y^3\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}\ge0\)(loại)
Xét \(x,y\ge0\)
\(\left(2\right)-\left(1\right)\Leftrightarrow\left(x+y\right)+\frac{24\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2+xy+y^2}-4\sqrt{2\left(x^2+y^2\right)}-10\sqrt{xy}\ge0\)
Ta có:
\(VT\le\left(x+y\right)+8\left(x+y\right)-4\left(x+y\right)-5\left(x+y\right)=0\)
\(\Rightarrow x=y\)
Làm tiếp
Câu trên sai rồi nha đọc cái này nè.
\(\hept{\begin{cases}3x+10\sqrt{xy}-y=12\left(1\right)\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\left(2\right)\end{cases}}\)
Điều kiện: \(xy\ge0\)
Xét \(x,y\le0\)
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\le3\)(đúng)
Xét \(x,y\ge0\)
Ta có:
\(x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}\ge x+\frac{4\left(x^3+y^3\right)}{x^2+y^2}-\sqrt{2\left(x^2+y^2\right)}\)
\(\ge x+2\sqrt{2\left(x^2+y^2\right)}-\sqrt{2\left(x^2+y^2\right)}=x+\sqrt{2\left(x^2+y^2\right)}\ge x+x+y=2x+y\)
\(\Rightarrow3\ge2x+y\left(3\right)\)
Ta có:
\(3x+10\sqrt{xy}-y=12\)
\(VT\le3x+5\left(x+y\right)-y=8x+4y\)
\(\Rightarrow12\le8x+4y\)
\(\Leftrightarrow3\le2x+y\left(4\right)\)
Từ (3) và (4) \(\Rightarrow x=y\)
Làm nốt
a) Ta thấy ngay \(\Delta MAO=\Delta DBO\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MO=DO\)
Xét tam giác MNP có NO là đường cao đồng thời trung tuyến nên tam giác MNP cân tại N.
b) Do tam giác MNP cân tại N nên NO cũng đồng thời là phân giác.
Vậy thì \(\Delta ION=\Delta BON\) (Cạnh huyền góc nhọn)
\(\Rightarrow OI=OB=R\)
Lại có \(OI\perp MN\Rightarrow\) MN vuông góc OI tại I hay MN là tiếp tuyến của (O)
c) Ta thấy ngay \(AM.BN=MI.IN\)
Xét tam giác vuông MON có OI là đường cao nên \(MI.IN=OI^2=R^2\)
\(\Rightarrow AM.BN=R^2\)
d) Do AM và BN cùng vuông góc với AB nên ANNB là hình thang vuông
\(S_{AMNB}=\frac{\left(AM+NB\right).AB}{2}=\frac{\left(MI+IN\right).AB}{2}=\frac{MN.AB}{2}\)
Do AB không đổi nên diện tích hình thang vuông AMNB nhỏ nhất khi MN nhỏ nhất.
MN là đường xiên nên nó nhỏ nhất khi là đường vuông góc, nói cách khác là tứ giác AMNB là hình chữ nhật.
Khi đó AM = OI = R.
Vậy khi M cách O một khoảng bằng R thì diện tích tứ giác AMNB nhỏ nhất.
Từ D Hạ đường cao DF' , DE' lần lượt lên AB; AC
=> Có: \(DE'\le DE;DF'\le DF\) với mọi vị trí D, E, F
=> \(S_{DEF}\le S_{DE'F'}\)
"=" xảy ra <=> E trùng E'; F trùng F'
AE'F'D là hình chữ nhật ( tự chứng minh )
Đặt: AF' = x; AE'=y
Có: \(AB=a;BC=2a=2.AB\)=> \(\Delta\)ABC vuông tại A có: \(\widehat{ACB}=30^o\)=> \(AC=a\sqrt{3}\)
=> \(BF'=a-x\); \(CE'=a\sqrt{3}-y\)
Dễ thấy: \(\Delta BF'D\approx\Delta DE'C\approx\Delta BAC\)
=> \(BD=2.\left(a-x\right)\); \(DC=\frac{\left(a\sqrt{3}-y\right)}{\sqrt{3}}.2\)
mà BD +DC =BC =2a
=> \(2\left(a-x\right)+\left(a-\frac{y}{\sqrt{3}}\right).2=2a\)
=> \(x+\frac{y}{\sqrt{3}}=a\)
Có diện tích DEF nhỏ nhất <=> D'E'F' nhỏ nhất <=> E'F' nhỏ nhất
=> \(E'F'^2=x^2+y^2=\frac{3}{4}\left(1^2+\frac{1}{3}\right)\left(x^2+y^2\right)\ge\frac{3}{4}\left(x+\frac{y}{\sqrt{3}}\right)^2=\frac{3}{4}.a^2=\frac{3}{4}a^2\)
=> \(E'F'\ge\frac{a\sqrt{3}}{2}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y\sqrt{3}\\x+\frac{y}{\sqrt{3}}=a\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{3}{4}a\\y=\frac{\sqrt{3}}{4}a\end{cases}}\)
=> Vậy vị trí : E cách A khoảng \(\frac{\sqrt{3}}{4}a\); F cách A khoảng \(\frac{3}{4}a\); D cách B khoảng \(2\left(a-\frac{3}{4}a\right)=\frac{a}{2}\)
=> \(S_{\Delta DEF}=\frac{1}{2}DE.DF=\frac{1}{2}AE.AF=\frac{1}{2}x.y=\frac{1}{2}.\frac{3a}{4}.\frac{\sqrt{3}a}{4}=\frac{3\sqrt{3}}{32}a^2\)
Có: \(\Delta=p^2+4>0\), mọi p
=> phương trình luôn có 2 nghiệm phân biệt .
Áp dụng định lí Viet ta có:
\(x_1+x_2=-p\)
\(x_1.x_2=-1\)
Ta cần chứng minh với n là số tự nhiên: \(S_{n+2}=-pS_{n+1}+S_n\) (1)
+) Với \(S_0=x_1^o+x_2^o=2\);\(S_1=-p\)
\(S_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=p^2+2=-pS_1+S_2\)
=>(1) đúng với n = 0.
+) G/s : (1) đúng với n
+) Chứng minh (1) đúng (1) đúng với n +1
Ta có: \(S_{n+1}=x_1^{n+1}+x_2^{n+1}=\left(x_1^n+x_2^n\right)\left(x_1+x_2\right)-x_1x_2\left(x_1^{n-1}+x_1^{n-2}\right)\)
\(=-pS_n+S_{n-1}\)
=> (1) đúng với n +1
Vậy với mọi số tự nhiên n: \(S_{n+2}=-pS_{n+1}+S_n\)(1)
G/s: \(\left(S_n;S_{n+1}\right)=d\)
=> \(\hept{\begin{cases}S_{n+1}=-pS_n+S_{n-1}⋮d\\S_n⋮d\end{cases}}\Rightarrow S_{n-1}⋮d\)
=> \(\hept{\begin{cases}S_n=-pS_{n-1}+S_{n-2}⋮d\\S_{n-1}⋮d\end{cases}}\Rightarrow S_{n-2}⋮d\)
.....
Cứ tiếp tự như vậy
=> \(S_0⋮d;S_1⋮d\)
=> \(\hept{\begin{cases}2⋮d\Rightarrow d\in\left\{\pm1;\pm2\right\}\\-p⋮d\Rightarrow d\in\left\{\pm1;\pm p\right\}\end{cases}}\)
Mà p là số lẻ
=> d =1
=> \(S_n;S_{n-1}\)là hai số nguyên tố cùng nhau.
a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
<=> \(x^3+x^2+x+1=4y^2+4y+1\)
<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ
=> \(x+1;x^2+1\) là 2 số lẻ (1)
Chứng minh: \(\left(x+1;x^2+1\right)=1\)
Đặt: \(\left(x+1;x^2+1\right)=d\)
=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)
=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)
=> \(2⋮d\)(2)
Từ (1) => d lẻ ( 3)
(2); (3) => d =1
Vậy \(\left(x+1;x^2+1\right)=1\)
Có \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương
Từ 2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương
Mặt khác \(x^2\) là số chính phương
Do đó: x = 0
Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)