K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

Không mất tính tổng quát: g/s: \(x\ge y\)

=> tồn tại số tự nhiên m sao cho: \(x=y+m\)

phương tình ban đầu trở thành:

\(2^{y+m}+2^y=2^{y+m+y}\)

<=> \(2^m+1=2^m.2^y\)

<=> \(\left(2^m\right)\left(2^y-1\right)=1\)

+) m =0 => y =x =1 thử vào thỏa mãn'

+) m > 0 

Nếu y < 0 => \(2^y-1< 0\)=> \(1=\left(2^m\right)\left(2^y-1\right)< 0\)

Nếu y = 0 => loại

Nếu y >0 . Có:  \(1=2^m\left(2^y-1\right)>2\left(2^y-1\right)\)=> \(2^y-1< \frac{1}{2}\) loại

Vậy  pt chỉ có nghiệm : \(x=y=1.\)

7 tháng 11 2019

b/ \(2^x+2^y+2^z=552\)

\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)

Vậy \(x=3;y=5;z=9\)

7 tháng 11 2019

a/ Dễ thấy: \(z>x,y\)

Xét \(x>y\)

\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)

Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)

Tương tự cho trường hợp \(x< y\)

Xét \(x=y\)

\(2^x+2^y=2^z\)

\(\Leftrightarrow2^{x+1}=2^z\)

\(\Leftrightarrow x+1=z\)

Vậy nghiệm là: \(x=y=z-1\)

7 tháng 11 2019

Đề sai

9 tháng 11 2019

sao ý

7 tháng 11 2019

Xét y = 0 thì x = 0

Xét \(y\ne0\)

\(x^3+y^3=y^6\)

\(\Leftrightarrow x^3=y^3\left(y^3-1\right)⋮y^3\)

\(\Rightarrow x⋮y\)

\(\Rightarrow x=ky\)

\(\Rightarrow y^3k^3+y^3=y^6\)

\(\Leftrightarrow k^3+1=y^3\)

\(\Leftrightarrow\left(y-k\right)\left(y^2+ky+k^2\right)=1\)

Làm nốt

6 tháng 11 2019

=>(x+y)^3-3xy(x+y)+z^3-3xyz=1

=>(x+y)^3+z^3-[3xy(x+y)+3xyz]=1

=>(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)=1

=>(x+y+z)(x^2+y^2+z^2+2xy-xz-yz-3xy)=1

=>(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=1

=>(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2zx)=2

=>(x+y+z)[(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)]=2

=>(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]=2

Có x+y+z;(x-y)^2+(y-z)^2+(z-x)^2 thuộc Z vì x,y nguyên

Mà (x-y)^2+(y-z)^2+(z-x)^2 >=0

Nên phân tích 2 thành tích 2 số nguyên mà 1 số lớn hơn hoặc bằng 0 ta có:

2=1. 2

=> x+y+z=2 và  (x-y)^2+(y-z)^2+(z-x)^2 =1

+)Nếu (x-y)^2+(y-z)^2+(z-x)^2 =1

Phân tích 1 thành tổng 3 scp có 1=0+0+0

Xét 3 trường hợp rồi tự làm nốt

+)Nếu x+y+z=2 

7 tháng 11 2019

Ta có: \(x^7;y^7\)khi chia cho 7 sẽ có số dư là: 0,1,2,3,4,5,6

Mà ta lại có VP chia hết cho 7 nên VT cũng phải chia hết cho 7 nên x, y phải có dạng sau đây:

\(\left(x,y\right)=\left(7m+a,7n+b\right)\)

Với \(a+b\equiv0\left(mod7\right)\)

20 tháng 11 2019

khong biet hehe

20 tháng 11 2019

wtf lop chin lop 7 giai duoc moi ghe

20 tháng 11 2019

tao lop 7 ne

4 tháng 2 2017

a/b-c + b/c-a + c/a-b=0 =>a/b-c=-(b/c-a + c/a-b)=c/a-b - b/c-a =b/a-c + c/b-a = b2-ab+ac-c2/(a-b)(c-a)

Tương tự rồi công lại

15 tháng 4 2019

a/b-c+b/c-a+c/a-b=0

=>a/b-c= ( b/c-a+c/a-b)

=c/a-b/c-a

=b/a-c+c/b-a

=b2-ab+ac-c2/(a-b) ( c - a )