a) Chứng minh: 12\(^{2n+1}\)+ 11\(^{n+2}⋮\) 133, n\(\in\) N.
b) Chứng tỏ: nếu abc\(⋮\) 37 thì cab\(⋮\) 37.
c) Cho A= 1x 4x 7x ...x 55x 58+ 3x 12x 21x...x 165x 174.
+) Tìm chữ số tận cùng của A.
+) Chứng tỏ rằng A\(⋮\) 377.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M1 là trung điểm của AB
>AM1 =1/2 AB
M2 là trung điểm của AM1
>AM2 =1/2 AM1 = 1/2*1/2 AB= 1/22 AB
M3 là trung điểm của AM2
>AM3 =1/2 AM2 =1/2*1/22 AB=1/23 AB
...
Mn là trung điểm của AMn-1
> AMn =1/2 AMn-1 = 1/2*1/2n-1 AB= 1/2n AB
Vậy AMn=1/2n AB
Với bài này, các bạn chỉ cần lưu ý là thứ tự thực hiện phép tính là: nhân và chia trước, cộng và trừ sau.
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2
Ta cho vd:
2 . 3 + 1 = 7 hoặc 2 . 32 + 1 = 19
3 . 2 + 2 = 8 hoặc 3 . 22 + 2 = 14
Ta có nhận xét :
2 . 3n + 1 là số lẻ
3 . 2n + 2 là số chẵn.
Khi phân tích 2 . 3n + 1 thì số đó sẽ phân tích có thể là 5n hoặc các số nguyên tố lớn hơn 3. (1)
Từ (1) ta suy ra 2 . 3n + 1 và 3 . 2n + 2 là 2 số nguyên tố cùng nhau.
Đây là cách giải của mình
Xét \(2\cdot3^n+1\)có
\(\left(2\cdot3^n\right)⋮2\)Suy ra \(2\cdot3^n+1\)l là số lẻ
Xét \(3\cdot2^n+2\)có
\(\left(2^n\right)⋮2\)( 2 lũy thừa số mấy cũng chia hết cho 2)
Suy ra \(\left(3\cdot2^n\right)⋮2\)
Mà 2 chia hết cho 2
Nên \(3\cdot2^n+2\)là số chẵn
Suy ra 2 số trên là 2 số nguyên tố cùng nhau (hết)
P/S không cần phải đưa ra ví dụ gì cả
Ta có: \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow1^3-1+2^3-2+...+50^3-50\)
\(=0+1.2.3+2.3.4+...+49.50.51\)
\(=\frac{49.50.51.52}{4}=1624350\)
Ta lại có:
\(1+2+3+...+50=\frac{50.51}{2}=1275\)
\(\Rightarrow1^3+2^3+...+50^3=1624350+1275=1625625=1275^2\)
Vậy nó chia hết cho 1275
Nhận xét : \(k^3=\left[\frac{k\left(k+1\right)}{2}\right]^2-\left[\frac{k\left(k-1\right)}{2}\right]^2\)
Tương tự,thế vào ta có :
\(1^3+2^3+...+50^3=-\left(\frac{1\cdot2}{2}\right)^2+\left(\frac{1\cdot0}{2}\right)^2-\left(\frac{2\cdot3}{2}\right)^2+\left(\frac{2\cdot1}{2}\right)^2-...\)
\(-\left(\frac{50\cdot51}{2}\right)^2+\left(\frac{50\cdot49}{2}\right)^2\)
\(=\left[\frac{50\left(50-1\right)}{2}\right]^2\)
\(=\left(1+2+3+...+50\right)^2⋮\left(1+2+3+..+50\right)\)
Mà \(1+2+3+...+50=1275\)
=> Ta có đpcm
Theo điều kiện của bài : đặt 1 hạt thóc vào ô thứ nhất . 2 hạt thóc vào ô thứ hai. Các ô tiếp theo cú thế nhân đôi.
Ta có:
1.1+2.2+3.2+4.2+....+64.2
=1+2.(2+3+4+...+64)
=1+2.2079
=1+4158
=4159
Chẳng biết có đúng không nữa ? Đúng hay sai xin ibox cho mình nhé!
+) Nếu n ⋮ 2 thì n = 2k ( k ∈N)
Suy ra : n + 6 = 2k + 6
Vì ( 2k + 6) ⋮ 2 nên (n+3)(n+6) ⋮ 2
+) Nếu n ⋮̸⋮̸ 2 thì n = 2k + 1 (k ∈N )
Suy ra n + 3 = 2k + 1 + 3 = 2k + 4
Vì ( 2k +4) ⋮ 2 nên (n+3)(n+6) ⋮ 2
Vậy (n+3)(n+6) chia hết cho 2 với mọi số tự nhiên n