Cho ba số nguyên dương có tổng bằng 100. Tìm gtnn và gtln của tích ba số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 số đó là a,b,c
a+b+c=100
theo bdt cosi: a+b+c>=\(3\sqrt[3]{abc}\)
\(\Leftrightarrow100\ge3\sqrt[3]{abc}\Leftrightarrow\frac{1000000}{27}\ge abc\)
vậy abc đạt gtln là 1000000/27 hay tích 3 số đó có GTLN là 1000000/27
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{abc}=1\)
\(\Leftrightarrow ab+bc+ca+1=abc\)
Nếu \(a,b,c\)đều là số lẻ thì \(VT\)là số chẵn, \(VP\)là số lẻ (mâu thuẫn)
Do đó có một trong ba số là số chẵn.
Giả sử \(c=2\): xét \(a\ge b>2\)
\(ab+2a+2b+1=2ab\)
\(\Leftrightarrow ab-2a-2b-1=0\)
\(\Leftrightarrow\left(a-2\right)\left(b-2\right)=5=1.5\)
\(\Rightarrow\hept{\begin{cases}a-2=5\\b-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=7\\b=3\end{cases}}\)
Vậy \(\left(a,b,c\right)=\left(7,3,2\right)\)và các hoán vị.
a) Ta có: sin30=cos60, sin50=cos40
Mà cos30 < cos38 < cos40 < cos60 < cos80
Nên cos30 < cos38 < sin50 < sin30 < cos80
b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)
và: sin49=cos41 => cos30 < sin49 (2)
Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)
Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63
TA CÓ \(\sin30\)= \(\cos60\)
\(\sin50=\cos40\)
---->> \(\cos30< \cos38< \cos40< \cos60< \cos80\)
------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)
Cái kia làm tương tự nhoa
Bạn xin 1 cái k
điều kiện: \(x\ge\frac{1}{2}\)
ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)
\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)
\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)
TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)
TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)
( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)
Chắc để là tìm max
\(A=\sqrt{xy+3yz+2z^2}+\sqrt{yz+3xz+2x^2}+\sqrt{xz+3xy+2y^2}\)
Với x,y > 0 ta luôn có \(\sqrt{ab}\le\frac{a+b}{2}\)
Dấu "=" xảy ra khi a = b
Áp dụng ta được:
\(2\sqrt{\frac{3}{2}}\sqrt{xy+3yz+2z^2}\le\frac{3}{2}+xy+3yz+2z^2\)
Tương tự: \(2\sqrt{\frac{3}{2}}\sqrt{yz+3xz+2x^2}\le\frac{3}{2}+yz+3xz+2x^2\)
\(2\sqrt{\frac{3}{2}}\sqrt{xz+3xy+2y^2}\le\frac{3}{2}+xz+3xy+2y^2\)
Cộng theo vế ta được :
\(2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+4xy+4yz+4xz+2x^2+2y^2+2z^2\)
Ngoài ra với mọi số thực x,y,z ta có :
\(x^2+y^2+z^2\ge xy+yz+xz\)
Dấu "=" xảy ra khi x = y = z
\(\Rightarrow2\sqrt{\frac{3}{2}}A\le\frac{9}{2}+6\left(x^2+y^2+z^2\right)\le\frac{9}{2}+6\times\frac{3}{4}=9\)
\(\Rightarrow A\le\frac{3\sqrt{6}}{2}\).
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
\(x=\sqrt[3]{2}+\sqrt[3]{3}\)
\(\Leftrightarrow x^3=2+3+3\sqrt[3]{2.3}\left(\sqrt[3]{2}+\sqrt[3]{3}\right)\)
\(\Leftrightarrow x^3-5=3\sqrt[3]{6}x\)
\(\Leftrightarrow x^9-15x^6+75x^3-125=162x^3\)
\(\Leftrightarrow x^9-15x^6-87x^3-125=0\)(1)
Nếu phương trình (1) có nghiệm hữu tỉ thì nghiệm đó có dạng \(\frac{p}{q}\)với \(p\)là ước của \(125\), \(q\)là ước của \(1\).
Do đó nếu (1) có nghiệm thì nghiệm đó chỉ có thể là thuộc tập hợp: \(\left\{-125,-25,-5,-1,1,5,25,125\right\}\).
Thử lần lượt các giá trị trên ta đều thấy không thỏa mãn.
Do đó phương trình (1) không có nghiệm hữu tỉ.
Mà \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là một nghiệm của phương trình (1).
Do đó \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là số vô tỉ.
VÌ : \(\sqrt{2}\)+\(\sqrt{3}\)là số vô tỉ
=> ....
Mới lớp 8 nên ko bt gì hết ;-;
Gọi ba số đó là \(a,b,c\)(\(a,b,c\inℕ^∗\))
\(a+b+c=100\)
\(P=abc\).
Dễ thấy GTNN của \(P\)đạt tại hai số bằng \(1\), một số bằng \(98\).
\(minP=98\)khi \(\left(a,b,c\right)=\left(1,1,98\right)\)và các hoán vị.
Giờ ta sẽ tìm GTLN của \(P\).
Giả sử \(a\ge b\ge c\).
Ta có nhận xét rằng \(P\)đặt giá trị lớn nhất khi hai trong ba số trên có hiệu không vượt quá \(1\).
Giả sử \(a-b>1\).
Khi đó thay \(a\)bởi \(a-1\), \(b\)bởi \(b+1\)ta có:
\(c\left(a-1\right)\left(b+1\right)=c\left(ab+a-b-1\right)>cab\)
Do đó \(P\)đạt GTLN khi \(a\ge b\ge c\), \(a-c\le1\).
Kết hợp với \(a+b+c=100\)suy ra \(P\)đạt max tại \(a=34,b=c=33\).
Khi đó \(maxP=34.33^2\).
Dấu \(=\)khi \(\left(a,b,c\right)=\left(34,33,33\right)\)và các hoán vị.
(34,33,33) và các hoán vị