Cho tam giác ABC có các cạnh a,b,c của tam giác tỉ lệ với các số 3,4,5. Tính độ dài các cạnh của tam giác, biết rằng cạnh lớn nhất dài hơn cạnh nhỏ nhất 6 cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong truyện “Cuộc chia tay của những con búp bê” của nhà văn Khánh Hoài, nhân vật Thủy được xây dựng rất thành công, là một đứa con hiếu thảo, ngoan hiền và thương anh nhưng số phận của Thủy cũng như số phận của hai anh em lại vô cùng éo le, bất hạnh.
Nhân vật Thủy được dựng lên quá đỗi chân thật và tự nhiên, có sức truyền cảm và khơi gợi nhiều suy ngẫm cho người đọc về giá trị và vai trò của mái ấm gia đình. Chúng ta cần phải trân trọng những tình cảm trong gia đình, coi gia đình là thứ thiêng liêng vô giá, và hãy luôn cùng nhau gìn giữ, bảo vệ tổ ấm của mình.
x là một số nào đó trong dãy số tuwh nhiên và y cũng như vậy
bạn ghi câu trên vào vở đi mình không nói dối đâu thật đó mình học rồi nên mình biết
ta có : \(a=\frac{bc}{d}\)nên : \(a+d>b+c\Leftrightarrow\frac{bc}{d}+d>b+c\Leftrightarrow bc+d^2>bd+cd\)
\(\Leftrightarrow bc-bd-cd+d^2>0\Leftrightarrow\left(b-d\right)\left(c-d\right)>0\) điều này luôn đúng do b>c>d
Vậy ta có đpcm
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
a) CD//Ey
=> ^CBE = ^BEy = 130o
b) Ta có ^xAB + ^ABD = 180o
=>Ax // CD
Mà CD // Ey
=> Ax//Ey
C.
Có CD//Ey (giả thiết)
=>^DBE+^BEy=180 (hai góc ở vị trí trong cùng phí
=>^DBE=180-^BEy=180-130=50
Có ^ABD+^DBE=40+50=90
=>^ABE=90
=>AB vuông góc BE (ĐPCM)
De cho gon dat ^BAC = A = 75°; ^ABC = B; ^ACB = C; BC = a; CA = b; AB = c
cosA = cos75° = cos(45° + 30°) = cos45°cos30° - sin45°sin30° = ( √6 - √2)/4
Theo gia thiet vs theo dinh ly hs cosin
{ c + b√2 = 2a (1)
{ a² = b² + c² - 2bc.cosA
<=>
{ 2b² + c² + 2√2bc = 4a²
{ 4b² + 4c² - 2(√6 - √2)bc = 4a²
Tru 2 pt cho nhau :
2b² + 3c² - 2√6bc = 0 <=> (√2b - √3c)² = 0 <=> √2b - √3c = 0
<=> √2sinB - √3sinC = 0 (theo dinh ly hs sin)
<=> sinC = √2.sinB/√3 (1)
Mat khac :
C = 105° - B <=> sinC = sin(105° - B) = sin105°cosB - cos105°sinB (2)
voi sin105° = sin75° = √(1 - cos²75°) = (2 + √3)/4 (3)
cos105° = - cos75° = (√2 - √6)/4 (4)
Thay (1); (3); (4) vao (2) rut gon ta co :
tanB = (3 + 2√3)/(√6 + √2) = (√6 + 3√2)/4
=> B; C
Về phía ngoài của \(\Delta\)ABC vẽ \(\Delta\)ACD vuông cân tại C.
Trên nửa mặt phẳng bờ AD không chứa B và C vẽ \(\Delta\)ADE đều.
Dễ dàng tính được: \(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-105^0=75^0\)
Do \(\Delta\)ACD vuông cân tại C => \(\widehat{CAD}=45^0\); \(\Delta\)ADE đều => \(\widehat{DAE}=60^0\)
=> \(\widehat{ABC}+\widehat{CAD}+\widehat{DAE}=75^0+45^0+60^0=180^0\)
=> 3 điểm B;A;E là 3 điểm thẳng hàng => \(AB+AE=BE\)(1)
Xét \(\Delta\)ACD: \(\widehat{ACD}=90^0;AC=CD\)=> \(AD^2=AC^2+CD^2=2.AC^2\)(ĐL Pytago)
=> \(AD=\sqrt{2}.AC\). Mà \(\Delta\)ADE đều => AD=AE\(\Rightarrow AE=\sqrt{2}.AC\)(2)
Từ (1) và (2) => \(BE=AB+AC.\sqrt{2}\).
Lại có: \(AB+AC.\sqrt{2}=2BC\)=> \(BE=2.BC\)
Ta thấy: EA=ED; CA=CD => E và C thuộc đường trung trực của AD => EC\(\perp\)AD (3)
=> \(\widehat{AEC}=30^0\)hay \(\widehat{BEC}=30^0\)
Xét \(\Delta\)ECB có: \(\widehat{BEC}=30^0\); \(BE=2.BC\)=> \(\Delta\)ECB vuông tại C hay EC\(\perp\)BC (4)
Từ (3) và (4) => AD // BC => \(\widehat{BCA}=\widehat{CAD}\)(So le trong). Mà \(\widehat{CAD}=45^0\)\(\Rightarrow\widehat{BCA}=45^0.\)
Vậy \(\widehat{BCA}=45^0\).
.
bn có thể tham khảo cách này
Gọi I là giao điểm của các tia phân giác \(\widehat{KBC}\)và\(\widehat{KCB}\).Khi đó KI là tia phân giác của \(\widehat{BKC}\)
Mặt khác, tam giác KBC có BKC=120o (vì \(\widehat{KBC}=40^o,\widehat{KCB}=40^o\))
Do đó \(\widehat{BKI}=\widehat{CKI}=\widehat{BKE}=\widehat{CKD}=60^o\)
Xét \(\Delta\)BKI và\(\Delta\)BKE ta có:\(\hept{\begin{cases}\widehat{B_2}=\widehat{B_3}\left(gt\right)\\BK\left(chung\right)\\\widehat{BKI}=\widehat{BKE}=60^o\end{cases}}\)
Suy ra \(\Delta\)BKI=\(\Delta\)BKE (g.c.g) =>KE=KI (1)
Tuong tự ta có KD=KI (2)
Từ (1) và (2) suy ra KE=KD hay \(\Delta\)KED cân tại K
Mặt khác,\(\widehat{EKD}=120^o=\widehat{BKC}\)(đối đỉnh)
Do đó \(\widehat{KED}=\widehat{KDE}=\frac{180^o-120^o}{2}=30^o\)
Ta có:
ACB=ACE+BCE
mà ACB=30 độ;ACE=10 độ=>BCE=20 độ
C/m tương tự với góc C ta có CBD=40 độ
Xét tam giác CBK ta có:
KCB + KBC + CKB=180
=> CKB= 180 - KCB - KBC
CKB=180-20-40
=120 độ
mà CKB đối đỉnh với DKE nên DKE=120 (mình ko viết dc kí hiệu góc nha)
yuuyuuuuuuuuuuuuuuuuudr
uuuuuuuu7
rruurrrrrrrrrrrrrrrrr7\(x = {-b \pm \sqrt{b^2-4ac} \over r2a}ddd\)
Do các cạnh tỉ lệ vs 3,4,5 và cạnh lớn nhất trừ cạnh nhỏ nhất =6
\(=\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{6}{2}=3\)
\(\Rightarrow\frac{a}{3}=3.3=9\)
\(\Rightarrow\frac{c}{5}=3.5=15\)
Theo tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{b}{4}=3.4=12\)
Vậy a,b,c là cách cạnh của tam giác
tíc mình nha
gọi 3 cạnh của tam giác đó là a,b,c
ta có : \(\frac{a}{3}+\frac{b}{4}+\frac{c}{5}\)và c- a = 6 cm
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-4}=\frac{6}{1}=6\)( vì c chiếm 5 phần nên là số lớn nhất)
\(\frac{a}{3}=6=>a=3.6=18\)
\(\frac{b}{4}=6=>b=4.6=24\)
\(\frac{c}{5}=6=>c=6.5=30\)
vậy chu vi hình tam giác là
18+ 24 +30= 72 cm