K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Áp dụng BĐT Cô -si cho 3 số không âm là a+ 2b, 3,3, ta được:

\(\sqrt[3]{a+2b}=\frac{1}{\sqrt[3]{9}}\sqrt[3]{3.3\left(a+2b\right)}\le\frac{1}{\sqrt[3]{9}}.\frac{3+3+\left(a+2b\right)}{3}\)

\(=\frac{6+a+2b}{3\sqrt[3]{9}}\)

Tương tự ta có: \(\sqrt[3]{b+2c}\le\frac{6+b+2c}{3\sqrt[3]{9}}\)\(\sqrt[3]{c+2a}\le\frac{6+c+2a}{3\sqrt[3]{9}}\)

\(\Rightarrow\sqrt[3]{a+2b}+\sqrt[3]{b+2c}+\sqrt[3]{c+2a}\le\frac{18+3\left(a+b+c\right)}{3\sqrt[3]{9}}\)

\(=\frac{27}{3\sqrt[3]{9}}=3\sqrt[3]{3}\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

DM
29 tháng 1 2018

Ta có  \(\left(\sqrt{a^4+a+1}-a^2\right)\left(\sqrt{a^4+a+1}+a^2\right)=a^4+a+1-a^4=a+1\) nên 

                                                        \(P=\sqrt{a^4+a+1}+a^2\)

Từ giả thiết   \(4a^2+\sqrt{2}a-\sqrt{2}=0\) suy ra \(a^2=\frac{-\sqrt{2}}{4}\left(a-1\right)\), do đó  \(a^4=\frac{1}{8}\left(a^2-2a+1\right)\) và

                   \(a^4+a+1=\frac{1}{8}\left(a^2-2a+1\right)+a+1=\frac{\left(a+3\right)^2}{8}\).

Lại do giả thiết \(a>0\) suy ra   \(\sqrt{a^4+a+1}=\sqrt{\frac{\left(a+3\right)^2}{8}}=\frac{a+3}{2\sqrt{2}}\).

Từ đó    \(P=\sqrt{a^4+a+1}+a^2=\frac{a+3}{2\sqrt{2}}+\frac{-\sqrt{2}\left(a-1\right)}{4}=\frac{\sqrt{2}\left(a+3\right)-\sqrt{2}\left(a-1\right)}{4}=\sqrt{2}\)

18 tháng 12 2019

Ta có: \(x^2-y^2=100.110^{2n}\)

<=> \(\left(x-y\right)\left(x+y\right)=\left(10\right)^2.11^{2n}.10^{2n}\)là số chẵn

=> x - y; x + y cùng chẵn

Đặt: 2a = x - y; 2b = x + y (b>a >0) 

Khi đó: \(2a.2b=5^{2n+2}.11^{2n}.2^{2n+2}\)

<=> \(ab=5^{2n+2}.11^{2n}.2^{2n}\)

=> a là ước nguyên dương của \(5^{2n+2}.11^{2n}.2^{2n}\)

=> a có dạng \(a=5^s.11^t.2^r\) với: \(0\le s\le2n+2;0\le t\le2n;0\le r\le2n\)

Ta có:  s có 2n + 3 cách chọn;  t có 2n +1 cách chọn; r có 2n + 1 cách chọn 

Vì s, t, r độc lập nên a có: (2n + 3)(2n + 1)( 2n +1 ) cách chọn.

Với mỗi cách chọn a có một cách chọn b => có: \(\left(2n+3\right)\left(2n+1\right)^2\) ngiệm (a;b) 

Tuy nhiên chú ý: b > a> 0 và trong các cặp nghiệm (a; b ) trên có một cặp nghiệm thỏa mãn a = b.

Nên số nghiệm (a;b) thỏa mãn  b> a> 0 là \(\frac{\left(2n+3\right)\left(2n+1\right)^2-1}{2}\)

Và với mỗi nghiệm (a;b) thỏa mãn đk : b > a> 0 thì  có 1 cặp nghiệm (x;y)

=> Số nghiệm nguyên của phương trình ban đầu là: \(\frac{\left(2n+3\right)\left(2n+1\right)^2-1}{2}=\frac{\left(2n+2\right)\left(2n+1\right)^2+\left(2n+1\right)^2-1}{2}\)

\(=\left(n+1\right)\left(2n+1\right)^2+2n\left(n+1\right)=\left(n+1\right)\left(4n^2+6n+1\right)\)(1) ( với n nguyên dương )

Nhận xét: \(\left(4n^2+6n+1;n+1\right)=1\)(2)

Chứng minh: Thật vậy: Đặt: \(\left(4n^2+6n+1;n+1\right)=d\)

Khi đó: \(4n^2+6n+1-4\left(n+1\right)^2⋮d\)

=> \(-2n-3⋮d\)

=> \(\left(-2n-3\right)+2\left(n+1\right)⋮d\)

=> \(-1⋮d\)

=> d = 1

Từ (1); (2)  số nghiệm nguyên (x; y) là số chính phương  <=> \(4n^2+6n+1\)và n +1 đồng thời là hai số chính phương với mọi n nguyên dương 

Mà: 

\(4n^2+4n+1< 4n^2+6n+1< 4n^2+8n+4\)với mọi số nguyên dương n

=> \(\left(2n+1\right)^2< 4n^2+6n+1< \left(2n+2\right)^2\)

=>   \(4n^2+6n+1\)không là số chính phương

Vậy nên số ngiệm phương trình không phải là số chính phương.

Ta có \(5^x=y^4+4y+1\)

\(\Leftrightarrow5^x=\left(y+2\right)^2-3\)

\(\Leftrightarrow5^x-\left(y+2\right)^2=-3\)

Xét x=0

\(\Rightarrow\left(y+2\right)^2=1+3=4\)

\(\Rightarrow y+2=2\Rightarrow y=0\left(tm\right)\)

Xét x>0 

Vì 5x và -3 là 2 số lẻ => (y+2)2là số chẵn

Đặt (y+2)2=4k2                (k>1)

=> (y+2)2=5x+3

=> 5x=4k2-3

Vì k>1 nên 4k2-3\(⋮̸\)5

Vậy x=0,y=0 

1 tháng 7 2019

còn x=2 và y=2 nữa nha bn

11 tháng 12 2019

ĐK : \(x\ge-2;y\ge-3\)

pt (1) <=> \(x^3+x=\left(y+1\right)^3+\left(y+1\right)\)

<=> \(\left(y+1\right)^3-x^3+\left(y+1\right)-x=0\)

<=> \(\left(y+1-x\right)\left(\left(y+1\right)^2+\left(y+1\right)x+x^2+1\right)=0\)

<=> \(y+1-x=0\) vì \(\left(y+1\right)^2+\left(y+1\right)x+x^2+1>0\)dễ chứng minh.

<=> \(x=y+1\)(1')

pt (2) <=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{y+3}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{y+3}-3\right|=1\)(2')

Thế (1') vào (2') ta có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)

Có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=\left|\sqrt{y+3}-2\right|+\left|3-\sqrt{y+3}\right|\ge1\)

Do đó: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)<=> \(\left(\sqrt{y+3}-2\right)\left(3-\sqrt{y+3}\right)\ge0\)

<=> \(2\le\sqrt{y+3}\le3\)

<=> \(4\le y+3\le9\)

<=> \(1\le y\le6\)(tm) 

Khi đó: x = y + 1 với mọi y thỏa mãn \(1\le y\le6\)

Vậy tập nghiệm  \(S=\left\{\left(y+1;y\right):1\le y\le6\right\}\)

10 tháng 12 2019

\(3^x+171=y^2\)

+) Với x = 0 ta có: \(1+171=y^2\)( loại )

+) Với x = 1, ta có: \(3+171=y^2\)( loại )

+) Với x > 1.

pt <=> \(9\left(3^{x-2}+19\right)=y^2\)

=> \(3^{x-2}+19=z^2\)với \(y=3z\)( z là số tự nhiên )

+) TH1: \(x-2=2k+1\)( k là số tự nhiên )

Ta có: \(3^{2k+1}+19=z^2\)

có: \(3^{2k+1}+19⋮2\)

nhưng \(3^{2k+1}+19=3^{2k}.3+1+16+2\): 4 dư 2

=> \(3^{2k+1}+19\) không phải là số chính phương

Vậy loại trường hợp này

+) TH2: \(x-2=2k\)( k là số tự nhiên )

Ta có: \(3^{2k}+19=z^2\)

<=> \(\left(z-3^k\right)\left(z+3^k\right)=19\) (1)

z, 3^k là số tự nhiên nên ( 1) <=> \(\hept{\begin{cases}z+3^k=19\\z-3^k=1\end{cases}\Leftrightarrow}\hept{\begin{cases}z=10\\k=2\end{cases}}\)=> x = 6; y = 30. Thử lại thấy thỏa mãn

Vậy....

10 tháng 8 2017

Mỗi biểu thức trong dấu căn có dạng:

\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}\)   ( Với \(k\ge2\))

Ta có:

\(1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}=\frac{k^2\left(k+1\right)^2+\left(k+1\right)^2+k^2}{k^2\left(k+1\right)^2}=\frac{k^4+2k^3+k^2+k^2+2k+1+k^2}{k^2\left(k+1\right)^2}\)

\(=\frac{k^4+2k^2\left(k+1\right)+\left(k+1\right)^2}{k^2\left(k+1\right)^2}=\frac{\left(k^2+k+1\right)^2}{\left(k\left(k+1\right)\right)^2}\)

\(\Rightarrow\sqrt{1+\frac{1}{k^2}+\frac{1}{\left(k+1\right)^2}}=\frac{k^2+k+1}{k^2+k}=1+\frac{1}{k\left(k+1\right)}=1+\frac{1}{k}-\frac{1}{k+1}\)

\(\Rightarrow S=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2013}-\frac{1}{2014}=2014-\frac{1}{2014}\)

22 tháng 9 2017

Mỗi biểu thức trong dấu căn có dạng:

1+1k2 +1(k+1)2    ( Với k≥2)

Ta có:

1+1k2 +1(k+1)2 =k2(k+1)2+(k+1)2+k2k2(k+1)2 =k4+2k3+k2+k2+2k+1+k2k2(k+1)2 

=k4+2k2(k+1)+(k+1)2k2(k+1)2 =(k2+k+1)2(k(k+1))2 

⇒√1+1k2 +1(k+1)2 =k2+k+1k2+k =1+1k(k+1) =1+1k −1k+1 

⇒S=1+1−12 +1+12 −13 +1+13 −14 +...+1+12013 −12014 =2014−12014 

3 tháng 12 2019

\(ĐKXĐ:x\ge2\)

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x^2+2x-3}+\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(+\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(TH1:\sqrt{x-2}-\sqrt{x+3}=0\Leftrightarrow\sqrt{x-2}=\sqrt{x+3}\)

\(\Leftrightarrow x-2=x+3\left(L\right)\)

\(TH2:\sqrt{x-1}-1=0\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)(t/m đk)

Vậy x = 2

3 tháng 12 2019

\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)

\(\Leftrightarrow\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)

Dễ thấy \(VT>0\Rightarrow3x-5>0\Leftrightarrow x>\frac{5}{3}\)

\(pt\Leftrightarrow\left(\sqrt{x^2+5}-3\right)-\left(\sqrt{x^2+12}-4\right)+3x-6=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+5}+3}-\frac{x^2-4}{\sqrt{x^2+12}+4}+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}+3\right)=0\)

Ta có: \(\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}\)\(=\left(x+2\right)\left(\frac{1}{\sqrt{x^2+5}+3}-\frac{1}{\sqrt{x^2+12}+4}\right)\)

\(=\left(x+2\right).\frac{\sqrt{x^2+12}-\sqrt{x^2+5}+1}{\left(\sqrt{x^2+5}+3\right)\left(\sqrt{x^2+12}+4\right)}>0\forall x>\frac{5}{3}\)

\(\Rightarrow x-2=0\Leftrightarrow x=2\)

Vậy x = 2

5 tháng 12 2017

giúp mình cái nhé

5 tháng 12 2017

a=34;

30 tháng 11 2019

Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)

\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)

\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)

\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Tương tự ta cũng chứng minh đc:

 \(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)

\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)

\(=\sqrt{5}\left(a+b+c\right)\)

Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)