K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

Dự đoán Max P = 81 nên ta chứng minh: \(P\le81=\left(a+b+c\right)^4\)

Ta có: \(P=a^4+b^4+c^4-3abc\le a^4+b^4+c^4+78abc\)

\(=a^4+b^4+c^4+26\left(a+b+c\right)abc\)

Vậy ta chứng minh: \(a^4+b^4+c^4+26abc\left(a+b+c\right)\le\left(a+b+c\right)^4\)

SOS là ra rồi :DD

1 tháng 1 2020

Chứng minh:\(a^4+b^4+c^4+26abc\left(a+b+c\right)\le\left(a+b+c\right)^4\)

Giả sử \(a=max\left\{a,b,c\right\}\).Xét hiệu: 

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(3;0;0\right)\) và các hoán vị.

6 tháng 1 2018

O A B C D E I

a) Xét \(\Delta\)BAE: Có đường trung tuyến AO (O thuộc BE) với AO=BO=EO=1/2BE

=> \(\Delta\)BAE vuông tại A hay EA vuông góc AB

Mà AB và CD vuông góc với nhau => AE//CD => Tứ giác AECD là hình thang (1)

Lại có: 4 điểm A;E;C;D cùng nằm trên (O;R) => ) thuộc trung trực của AE và CD (2)

Từ (1) VÀ (2) => Hình thang AECD có trục đối xứng => Tứ giác AECD là hình thang cân

=> AC=DE (2 đg chéo) (đpcm).

b) Do AB vuông góc CD tại I 

Ta có: \(IA^2+IC^2=AC^2\)(Định lí Pytagorean)

\(IB^2+ID^2=BD^2\)(Định lí Pytagorean)

\(\Rightarrow IA^2+IB^2+IC^2+ID^2=AC^2+BD^2\)

Vì \(AC=DE\)(cmt) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=DE^2+BD^2\)(3)

Chứng minh được \(\Delta\)BDE vuông tại D (Có trung truyến DO bằng 1/2 cạnh tương ứng BE)

\(\Rightarrow DE^2+BD^2=BE^2\)(4)

Thay (4) vào (3) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=BE^2\)(5)

R là bán kính của đường trond, BE là đường kính \(\Rightarrow BE^2=\left(2R\right)^2=4R^2\)(6)

Từ (5) và (6) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=4R^2\) (đpcm).

c) Mình chưa nghĩ ra ^^ 

22 tháng 9 2019

O A B C D E I

a) Ta thấy BE là đường kính của (O). Suy ra ^BAE chắn nửa đường tròn hay AB vuông góc AE

Do đó AE // CD. Mà AE,CD là hai dây của đường tròn (O) nên (AC = (DE tức AC = DE (đpcm).

b) Tương tự câu a, \(\Delta\)BED vuông tại D. Áp dụng ĐL Pytagoras ta có:

\(\left(IA^2+IC^2\right)+\left(IB^2+ID^2\right)=AC^2+BD^2=DE^2+BD^2=BE^2=4R^2\)(đpcm).

c) Áp dụng ĐL Pytagoras và hệ thức lượng trong đường tròn ta có:

\(AB^2+CD^2=\left(IA+IB\right)^2+\left(IC+ID\right)^2=\left(IA^2+IB^2+IC^2+ID^2\right)+2\left(IA.IB+IC.ID\right)\)

\(=4R^2+4\left(R^2-OI^2\right)=8R^2-4OI^2\)(đpcm).

30 tháng 12 2019

sos là ra

30 tháng 12 2019

Nhưng trước hết làm cho nó đẹp lại cái đã:v Bài toán gì đâu mà cho toàn phân thức xấu xí, lần sau bảo người ra đề chọn hệ số đẹp hơn nha zZz Cool Kid zZz  :DD

\(P=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}+\left(\frac{\left(a^3+b^3+c^3\right)}{4abc}-\frac{3}{4}\right)+\frac{3}{4}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)

\(=\frac{47}{60}+\frac{\left(ab+bc+ca\right)}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)

\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\frac{4}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}\)

\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}\)

\(=\frac{47}{60}+\frac{1\left(a^2+b^2+c^2\right)}{15\left(ab+bc+ca\right)}-\frac{131\left(ab+bc+ca\right)}{60\left(a^2+b^2+c^2\right)}\)

Đặt \(x=\frac{a^2+b^2+c^2}{ab+bc+ca}\Rightarrow x\ge1\). Ta cần tìm min:

\(P=f\left(x\right)=\frac{47}{60}+\frac{1}{15}x-\frac{131}{60x}\)

\(=\frac{47}{60}+\frac{1}{15}x+\frac{1}{15x}-\frac{9}{4x}\)

\(\ge\frac{47}{60}+\frac{2}{15}-\frac{9}{4}=-\frac{4}{3}\)

Đẳng thức xảy ra khi \(a=b=c\)

P/s: Tính dùng sos nhưng nghĩ lại ko nên lạm dụng nên dùng cách khác:))

30 tháng 12 2019

Hướng dẫn:

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\left(1\right)\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\left(2\right)\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\left(3\right)\end{cases}}\)

ĐK: \(x;y;z;x+y;y+z;z+x\ne0\)

TH1: x + y + z = 0

=>  y + z = - x

thế vào (1); \(\frac{1}{x}+\frac{1}{-x}=\frac{1}{2}\)vô lí

TH2: x + y + z \(\ne\)0.

\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x+y+z}{xy+xz}=\frac{1}{2}\\\frac{x+y+z}{yz+xy}=\frac{1}{3}\\\frac{x+y+z}{xz+yz}=\frac{1}{4}\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{xy+xz}{x+y+z}=2\\\frac{yz+xy}{x+y+z}=3\\\frac{xz+yz}{x+y+z}=4\end{cases}}\)

Đặt : x + y + z = k

=> \(\hept{\begin{cases}xy+xz=2k\left(4\right)\\yz+xy=3k\left(5\right)\\xz+yz=4k\left(6\right)\end{cases}}\)<=> \(\hept{\begin{cases}xy=\frac{1}{2}k\\yz=\frac{5}{2}k\\xz=\frac{3}{2}k\end{cases}}\Leftrightarrow\hept{\begin{cases}2xy=k\\\frac{2yz}{5}=k\\\frac{2xz}{3}=k\end{cases}}\)

Trừ vế theo vế:

=> \(\hept{\begin{cases}x=\frac{z}{5}\\\frac{y}{5}=\frac{x}{3}\\\frac{z}{3}=y\end{cases}}\)<=> \(z=3y=5x\)thế vào (1)  rồi tìm x; y ; z.

\(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\)

<=> \(\frac{23}{20x}=\frac{1}{2}\Leftrightarrow x=\frac{23}{10}\)

khi đó: \(y=\frac{5x}{3}=\frac{23}{6};z=5x=\frac{23}{2}\)thử lại thỏa mãn.

30 tháng 12 2019

Nhận xét: từ hệ => x, y, z đông thời bằng 0 hoặc đồng thời khác 0

TH1: x = y = z =0.

=> ( 0; 0; 0 ) là 1 nghiệm.

TH2: x ; y ; z đồng thời khác 0

\(\hept{\begin{cases}\sqrt{x}\left(1+y\right)=2y\\\sqrt{y}\left(1+z\right)=2z\\\sqrt{z}\left(1+x\right)=2x\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{1}{y}+1=\frac{2}{\sqrt{x}}\\\frac{1}{z}+1=\frac{2}{\sqrt{y}}\\\frac{1}{x}+1=\frac{2}{\sqrt{z}}\end{cases}}\)

Cộng vế theo vế sau đó đưa về hằng đẳng thức để đánh giá.

27 tháng 7 2016

<=>\(\left(x-19\right)-2\sqrt{x-19}+1+\left(y-7\right)+4\sqrt{y-7}+4\)+\(+\left(z-1997\right)-6\sqrt{z-1997}+9=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-19}=1\\\sqrt{y-7}=2\\\sqrt{z-1997}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=20\\y=11\\z=2006\end{cases}}}\)

vay...

28 tháng 7 2016

\(\Leftrightarrow\left(x-19\right)2\sqrt{x-19}+1+\left(y-7\right)+4+\left(z-1997\right)+9=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-19}=1\\\sqrt{y-7}=2\\\sqrt{z-1997}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=20\\y=11\\z=2006\end{cases}}\)

Chúc bạn học tốt!

20 tháng 9 2016

Áp dụng BĐT Cauchy , ta có : \(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)(1)

Tương tự : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)(2) ; \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\) (3)

Cộng (1) , (2) và (3) theo vế ta được  \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Leftrightarrow}a+b+c=0\) (vô lí vì trái với giả thiết bài ra )
Vậy ta có điều phải chứng minh.

25 tháng 10 2017

lằng nhằng quá

ai thay hay thi k cho mk nha

30 tháng 12 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [O, M] Đoạn thẳng l: Đoạn thẳng [M, H] Đoạn thẳng m: Đoạn thẳng [H, O] Đoạn thẳng n: Đoạn thẳng [A, M] Đoạn thẳng p: Đoạn thẳng [M, B] Đoạn thẳng q: Đoạn thẳng [A, O] Đoạn thẳng r: Đoạn thẳng [O, B] Đoạn thẳng t: Đoạn thẳng [N, B] Đoạn thẳng b: Đoạn thẳng [E, J_1] Đoạn thẳng e: Đoạn thẳng [N, E] Đoạn thẳng f_1: Đoạn thẳng [E, B] Đoạn thẳng g_1: Đoạn thẳng [A, E] O = (6.36, -0.08) O = (6.36, -0.08) O = (6.36, -0.08) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có tam giác MAB cân tại M có MK là phân giác nên đồng thời là đường trung tuyến. Vậy thì K là trung điểm AB hay \(AK=\frac{AB}{2}\)

Ta thấy các tam giác MHO, MAO, MBO đều là các tam giác vuông chung cạnh huyền MO nên M, H, A, O B cùng thuộc đường tròn đường kính MO.

b) Do K là trung điểm AB nên theo tính chất đường kính dây cung, ta có \(\widehat{IKO}=90^o\)

Suy ra \(\Delta IKO\sim\Delta MHO\left(g-g\right)\Rightarrow\frac{OI}{OM}=\frac{OK}{OH}\Rightarrow OI.OH=OM.OK\)

Xét tam giác vuông MBO, đường cao BK, ta có: \(OK.OM=OB^2=R^2\)

Vậy nên \(OI.OH=OK.OM=R^2\)

c) Ta thấy do trung điểm của BN cắt OM tại E nên EN = EB

Lại có EB = EA vì OM là đường trung trực của AB

Suy ra EA = EN hay tam giác EAN cân tại E.

Gọi J là trung điểm AN.

Xét tam giác cân EAN có EJ là trung tuyến nên đồng thời là đường cao.

Vậy thì \(EJ\perp OA\) hay EJ // AM.

Xét tam giác OAM, áp dụng định lý Talet ta có:

\(\frac{OE}{OM}=\frac{OF}{OA}=\frac{2}{3}\)

23 tháng 5 2017

MA^2+MB^2=K^2

=(A^2+B^2)×M=k^2