cho hình thang abcd có ab//cd, đường cao bằng 4cm,đường chéo bd=5cm,hai đường chéo ac và bd vuông góc với nhau, tính diện tính hình thang abcd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quát:
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)
Suy ra: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)
\(A=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 1+2\left(\sqrt{2}-\sqrt{1}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=1+2\left(\sqrt{100}-\sqrt{1}\right)=19\)
\(A=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(=2\left(\sqrt{100}-\sqrt{1}\right)=18\)
Do đó ta có đpcm.
\(A=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)=b\left(a^5-a\right)-a\left(b^5-b\right)\)
Ta sẽ chứng minh \(x^5-x\)chia hết cho \(30\)với \(x\)nguyên.
Ta có:
\(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)
Có: \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)là tích của \(5\)số nguyên liên tiếp nên nó chia hết cho \(2,3,5\)mà \(2,3,5\)đôi một nguyên tố cùng nhau nên nó chia hết cho \(2.3.5=30\)
\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số nguyên liên tiếp nên nó chia hết cho \(2,3\)mà \(2,3\)nguyên tố cùng nhau nên nó chia hết cho \(2.3=6\)suy ra \(5x\left(x-1\right)\left(x+1\right)⋮30\)
suy ra \(x^5-x⋮30\)với \(x\)nguyên.
Do đó \(A=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)=b\left(a^5-a\right)-a\left(b^5-b\right)\)chia hết cho \(30\)với \(a,b\)là số nguyên.
Nếu có \(2\)học sinh đạt giải cả \(3\)môn thì có ít nhất \(3\)học sinh đạt giải \(2\)môn, \(4\)học sinh chỉ đạt giải \(1\)môn.
Khi đó có số giải là:
\(3\times2+2\times3+1\times4=16\)(giải) lớn hơn \(15\)giải.
Do đó chỉ có \(1\)học sinh đạt giải cả \(3\)môn.
Do bất kì hai môn nào cũng có ít nhất \(1\)học sinh đạt giải cả hai môn nên số học sinh đạt giải hai môn ít nhất là \(3\)học sinh.
Nếu có từ \(4\)học sinh trở lên đạt giải hai môn, thì có ít nhất \(5\)học sinh đạt \(1\)giải, khi đó tổng số giải ít nhất là:
\(3\times1+2\times4+1\times5=16\)(giải)
Do đó chỉ có \(3\)học sinh đạt \(2\)giải. Khi đó số học sinh đạt \(1\)giải là:
\(\left(15-3\times1-2\times3\right)\div1=6\)(học sinh)
Đội tuyển học sinh giỏi đó có số học sinh là:
\(1+3+6=10\)(học sinh)
Xét tam giác \(BGA\)vuông tại \(G\):
\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)
Xét tam giác \(ABE\)vuông tại \(A\):
\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)
Từ (1) và (2) suy ra \(BC^2+AC^2=30\)
mà \(BC^2=AC^2+6\)
suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).
Ta có:
\(abc\ge0\)
\(\left(a-4\right)\left(b-4\right)\left(c-4\right)\le0\)
\(\Leftrightarrow abc-4\left(ab+bc+ca\right)+16\left(a+b+c\right)-64\le0\)
\(\Leftrightarrow4\left(ab+bc+ca\right)-16\left(a+b+c\right)+64\ge abc\ge0\)
\(\Leftrightarrow ab+bc+ca\ge8\)
\(P=a^2+b^2+c^2+ab+bc+ca=\left(a+b+c\right)^2-\left(ab+bc+ca\right)\)
\(\le6^2-8=28\)
Dấu \(=\)khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)và các hoán vị.
Bài 8:
Diện tích phần màu trắng bằng số phần diện tích hình vuông lớn là:
\(1-\frac{73}{75}=\frac{2}{75}\)
Diện tích phần màu trắng bằng số phần diện tích hình vuông nhỏ là:
\(1-\frac{14}{15}=\frac{1}{15}\)
Quy đông tử số: \(\frac{2}{75}=\frac{2}{75},\frac{1}{15}=\frac{2}{30}\)
Nếu diện tích hình vuông lớn là \(75\)phần thì diện tích hình vuông nhỏ là \(30\)phần.
Hiệu số phần bằng nhau là:
\(75-30=45\)(phần)
Diện tích hình vuông lớn là:
\(240\div45\times75=400\left(cm^2\right)\)
Ta có: \(400=20\times20\)nên độ dài cạnh hình vuông lớn là \(20cm\).
Bài 2:
Mỗi phút cả lớp 4A quét được số phần sân trường là:
\(1\div15=\frac{1}{15}\)(sân trường)
Mỗi phút \(\frac{3}{4}\)lớp 4A quét được số phần sân trường là:
\(\frac{1}{15}\times\frac{3}{4}=\frac{1}{20}\)(sân trường)
Mỗi phút lớp 4B quét được số phần sân trường là:
\(1\div24=\frac{1}{24}\)(sân trường)
Mỗi phút \(\frac{4}{5}\)lớp 4B quét được số phần sân trường là:
\(\frac{1}{24}\times\frac{4}{5}=\frac{1}{30}\)(sân trường)
Mỗi phút \(\frac{3}{4}\)lớp 4A và \(\frac{4}{5}\)lớp 4B quét được số phần sân trường là:
\(\frac{1}{20}+\frac{1}{30}=\frac{1}{12}\)(sân trường)
\(\frac{3}{4}\)lướp 4A và \(\frac{4}{5}\)lớp 4B cùng quét thì xong sau số phút là:
\(1\div\frac{1}{12}=12\)(phút)
gọi cd là a cr là b
theo bài ra ta có:2b-a=5(1)
2a-2b=10(1)
lấy (1)+(2) ta được:2b-a+2a-2b=a=15
vậy cd của hình chử nhật là 15 chiều rộng là 10
chu vi là (10+5)*2=50
theo de ba ta co
2 rong - dai = 5
2dai - 2 rong = 10
vay khi gap dai len 2 lan thi dai tang len
10 + 5 = 15
vi dai tang len 2 lan co nghia la = them 1 lan cua no
1 lan dai = 15 vay dai la 15
rong la
(15+5): 2 = 10 m
chu vi hinh chu nhat
(15+10)x2=50 m
dap so 50m
ĐK: \(y\ne0,xy\ge0\).
\(4x^2+9y^2=16xy\)
Chia cả hai vế cho \(y^2\)ta được:
\(4\left(\frac{x}{y}\right)^2+9=\frac{16x}{y}\)
\(\Leftrightarrow\frac{x}{y}=\frac{4\pm\sqrt{7}}{2}\)
Với \(y>0\)thì \(x\ge0\)
\(P=\frac{\sqrt{xy}+\sqrt{y^2}}{y}-\sqrt{\frac{x}{y}}=\frac{\sqrt{x}\sqrt{y}+y}{y}-\sqrt{\frac{x}{y}}=\sqrt{\frac{x}{y}}+1-\sqrt{\frac{x}{y}}=1\)
Với \(y< 0\)thì \(x\le0\):
\(P=\frac{\sqrt{xy}+\sqrt{y^2}}{y}-\sqrt{\frac{x}{y}}=\frac{\sqrt{-x}\sqrt{-y}-y}{y}-\sqrt{\frac{x}{y}}=-\sqrt{\frac{x}{y}}-1-\sqrt{\frac{x}{y}}=-2\sqrt{\frac{x}{y}}-1\)
\(=-2\sqrt{\frac{4\pm\sqrt{7}}{2}}-1=-\left(1\pm\sqrt{7}\right)-1=-2\pm\sqrt{7}\)
Bạn tự vẽ hình nhé.
Gọi \(O\)là tâm của đường tròn ngoại tiếp tam giác \(ABC\).
Do \(SA=SB=SC\)nên \(SO\perp\left(ABC\right)\).
Gọi \(H\)là trung điểm \(BC\)thì \(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-x^2}\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\sqrt{a^2-x^2}.2x=x\sqrt{a^2-x^2}\)
\(AO=\frac{AB.AC.BC}{4S_{ABC}}=\frac{a.a.2x}{4x\sqrt{a^2-x^2}}=\frac{a^2}{2\sqrt{a^2-x^2}}\)
\(SO=\sqrt{SA^2-AO^2}=\sqrt{a^2-\frac{a^4}{4\left(a^2-x^2\right)}}=\frac{a\sqrt{3a^2-4x^2}}{2\sqrt{a^2-x^2}}\)
\(V_{S.ABC}=\frac{1}{3}S_{ABC}.SO=\frac{1}{3}x\sqrt{a^2-x^2}.\frac{a\sqrt{3a^2-4x^2}}{2\sqrt{a^2-x^2}}=\frac{ax\sqrt{3a^2-4x^2}}{6}\)
Ta có: \(x\sqrt{3a^2-4x^2}=\frac{1}{2}2x\sqrt{3a^2-4x^2}\le\frac{4x^2+3a^2-4x^2}{4}=\frac{3a^2}{4}\)
Suy ra \(V_{S.ABC}\le\frac{a.3a^2}{4.6}=\frac{a^3}{8}\)
Dấu \(=\)khi \(2x=\sqrt{3a^2-4x^2}\Leftrightarrow x=\frac{a\sqrt{6}}{4}\).
Dựng hình bình hành \(ABEC\).
Khi đó \(E\in DC\).
Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).
Kẻ \(BH\perp DE\).
Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\):
\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)
Có ai biết đổi tên cho mình hông?