K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 6 2021

Dựng hình bình hành \(ABEC\).

Khi đó \(E\in DC\).

Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).

Kẻ \(BH\perp DE\)

Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\)

\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)

Có ai biết đổi tên cho mình hông?

DD
22 tháng 6 2021

Tổng quát: 

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Suy ra: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(A=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}< 1+2\left(\sqrt{2}-\sqrt{1}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=1+2\left(\sqrt{100}-\sqrt{1}\right)=19\)

\(A=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=2\left(\sqrt{100}-\sqrt{1}\right)=18\)

Do đó ta có đpcm. 

DD
22 tháng 6 2021

\(A=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)=b\left(a^5-a\right)-a\left(b^5-b\right)\)

Ta sẽ chứng minh \(x^5-x\)chia hết cho \(30\)với \(x\)nguyên.

Ta có: 

\(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)\)

\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)

Có: \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)là tích của \(5\)số nguyên liên tiếp nên nó chia hết cho \(2,3,5\)mà \(2,3,5\)đôi một nguyên tố cùng nhau nên nó chia hết cho \(2.3.5=30\)

\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số nguyên liên tiếp nên nó chia hết cho \(2,3\)mà \(2,3\)nguyên tố cùng nhau nên nó chia hết cho \(2.3=6\)suy ra \(5x\left(x-1\right)\left(x+1\right)⋮30\)

suy ra \(x^5-x⋮30\)với \(x\)nguyên. 

Do đó \(A=ab\left(a^4-b^4\right)=ab\left(a^4-1-\left(b^4-1\right)\right)=b\left(a^5-a\right)-a\left(b^5-b\right)\)chia hết cho \(30\)với \(a,b\)là số nguyên. 

22 tháng 6 2021

Bạn tham khảo ở đường link bên dưới nhé !

Nguồn :https://h7.net/hoi-dap/toan-8/chung-minh-a-ab-a-4-b-4-chia-het-cho-30-faq324664.html

DD
22 tháng 6 2021

Nếu có \(2\)học sinh đạt giải cả \(3\)môn thì có ít nhất \(3\)học sinh đạt giải \(2\)môn, \(4\)học sinh chỉ đạt giải \(1\)môn.

Khi đó có số giải là: 

\(3\times2+2\times3+1\times4=16\)(giải) lớn hơn \(15\)giải.

Do đó chỉ có \(1\)học sinh đạt giải cả \(3\)môn. 

Do bất kì hai môn nào cũng có ít nhất \(1\)học sinh đạt giải cả hai môn nên số học sinh đạt giải hai môn ít nhất là \(3\)học sinh.

Nếu có từ \(4\)học sinh trở lên đạt giải hai môn, thì có ít nhất \(5\)học sinh đạt \(1\)giải, khi đó tổng số giải ít nhất là: 

\(3\times1+2\times4+1\times5=16\)(giải) 

Do đó chỉ có \(3\)học sinh đạt \(2\)giải. Khi đó số học sinh đạt \(1\)giải là: 

\(\left(15-3\times1-2\times3\right)\div1=6\)(học sinh) 

Đội tuyển học sinh giỏi đó có số học sinh là: 

\(1+3+6=10\)(học sinh) 

22 tháng 6 2021

lời giải có 10 bạn thôi

DD
21 tháng 6 2021

Xét tam giác \(BGA\)vuông tại \(G\)

\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)

Xét tam giác \(ABE\)vuông tại \(A\)

\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)

Từ (1) và (2) suy ra \(BC^2+AC^2=30\)

mà \(BC^2=AC^2+6\)

suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).

DD
21 tháng 6 2021

Ta có: 

\(abc\ge0\)

\(\left(a-4\right)\left(b-4\right)\left(c-4\right)\le0\)

\(\Leftrightarrow abc-4\left(ab+bc+ca\right)+16\left(a+b+c\right)-64\le0\)

\(\Leftrightarrow4\left(ab+bc+ca\right)-16\left(a+b+c\right)+64\ge abc\ge0\)

\(\Leftrightarrow ab+bc+ca\ge8\)

\(P=a^2+b^2+c^2+ab+bc+ca=\left(a+b+c\right)^2-\left(ab+bc+ca\right)\)

\(\le6^2-8=28\)

Dấu \(=\)khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)và các hoán vị. 

DD
21 tháng 6 2021

Bài 8: 

Diện tích phần màu trắng bằng số phần diện tích hình vuông lớn là: 

\(1-\frac{73}{75}=\frac{2}{75}\)

Diện tích phần màu trắng bằng số phần diện tích hình vuông nhỏ là: 

\(1-\frac{14}{15}=\frac{1}{15}\)

Quy đông tử số: \(\frac{2}{75}=\frac{2}{75},\frac{1}{15}=\frac{2}{30}\)

Nếu diện tích hình vuông lớn là \(75\)phần thì diện tích hình vuông nhỏ là \(30\)phần. 

Hiệu số phần bằng nhau là: 

\(75-30=45\)(phần) 

Diện tích hình vuông lớn là: 

\(240\div45\times75=400\left(cm^2\right)\)

Ta có: \(400=20\times20\)nên độ dài cạnh hình vuông lớn là \(20cm\).

DD
21 tháng 6 2021

Bài 2: 

Mỗi phút cả lớp 4A quét được số phần sân trường là: 

\(1\div15=\frac{1}{15}\)(sân trường) 

Mỗi phút \(\frac{3}{4}\)lớp 4A quét được số phần sân trường là: 

\(\frac{1}{15}\times\frac{3}{4}=\frac{1}{20}\)(sân trường) 

Mỗi phút lớp 4B quét được số phần sân trường là: 

\(1\div24=\frac{1}{24}\)(sân trường) 

Mỗi phút \(\frac{4}{5}\)lớp 4B quét được số phần sân trường là: 

\(\frac{1}{24}\times\frac{4}{5}=\frac{1}{30}\)(sân trường) 

Mỗi phút \(\frac{3}{4}\)lớp 4A và \(\frac{4}{5}\)lớp 4B quét được số phần sân trường là: 

\(\frac{1}{20}+\frac{1}{30}=\frac{1}{12}\)(sân trường) 

\(\frac{3}{4}\)lướp 4A và \(\frac{4}{5}\)lớp 4B cùng quét thì xong sau số phút là: 

\(1\div\frac{1}{12}=12\)(phút) 

20 tháng 4 2015

gọi cd là a cr là b

theo bài ra ta có:2b-a=5(1)

                        2a-2b=10(1)

     lấy (1)+(2) ta được:2b-a+2a-2b=a=15

vậy cd của hình chử nhật là 15 chiều rộng là 10

chu vi là (10+5)*2=50

24 tháng 4 2015

theo de ba ta co 

2 rong - dai = 5

2dai - 2 rong = 10

vay khi gap dai len 2 lan thi dai tang len

10 + 5 = 15

vi dai tang len 2 lan co nghia la = them 1 lan cua no

1 lan dai = 15 vay dai la 15

rong la

(15+5): 2 = 10 m

chu vi hinh chu nhat

(15+10)x2=50 m

dap so 50m

DD
20 tháng 6 2021

ĐK: \(y\ne0,xy\ge0\).

\(4x^2+9y^2=16xy\)

Chia cả hai vế cho \(y^2\)ta được: 

\(4\left(\frac{x}{y}\right)^2+9=\frac{16x}{y}\)

\(\Leftrightarrow\frac{x}{y}=\frac{4\pm\sqrt{7}}{2}\)

Với \(y>0\)thì \(x\ge0\)

\(P=\frac{\sqrt{xy}+\sqrt{y^2}}{y}-\sqrt{\frac{x}{y}}=\frac{\sqrt{x}\sqrt{y}+y}{y}-\sqrt{\frac{x}{y}}=\sqrt{\frac{x}{y}}+1-\sqrt{\frac{x}{y}}=1\)

Với \(y< 0\)thì \(x\le0\):

\(P=\frac{\sqrt{xy}+\sqrt{y^2}}{y}-\sqrt{\frac{x}{y}}=\frac{\sqrt{-x}\sqrt{-y}-y}{y}-\sqrt{\frac{x}{y}}=-\sqrt{\frac{x}{y}}-1-\sqrt{\frac{x}{y}}=-2\sqrt{\frac{x}{y}}-1\)

\(=-2\sqrt{\frac{4\pm\sqrt{7}}{2}}-1=-\left(1\pm\sqrt{7}\right)-1=-2\pm\sqrt{7}\)

DD
20 tháng 6 2021

Bạn tự vẽ hình nhé.

Gọi \(O\)là tâm của đường tròn ngoại tiếp tam giác \(ABC\).

Do \(SA=SB=SC\)nên \(SO\perp\left(ABC\right)\).

Gọi \(H\)là trung điểm \(BC\)thì \(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-x^2}\)

\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}\sqrt{a^2-x^2}.2x=x\sqrt{a^2-x^2}\)

\(AO=\frac{AB.AC.BC}{4S_{ABC}}=\frac{a.a.2x}{4x\sqrt{a^2-x^2}}=\frac{a^2}{2\sqrt{a^2-x^2}}\)

\(SO=\sqrt{SA^2-AO^2}=\sqrt{a^2-\frac{a^4}{4\left(a^2-x^2\right)}}=\frac{a\sqrt{3a^2-4x^2}}{2\sqrt{a^2-x^2}}\)

\(V_{S.ABC}=\frac{1}{3}S_{ABC}.SO=\frac{1}{3}x\sqrt{a^2-x^2}.\frac{a\sqrt{3a^2-4x^2}}{2\sqrt{a^2-x^2}}=\frac{ax\sqrt{3a^2-4x^2}}{6}\)

Ta có: \(x\sqrt{3a^2-4x^2}=\frac{1}{2}2x\sqrt{3a^2-4x^2}\le\frac{4x^2+3a^2-4x^2}{4}=\frac{3a^2}{4}\)

Suy ra \(V_{S.ABC}\le\frac{a.3a^2}{4.6}=\frac{a^3}{8}\)

Dấu \(=\)khi \(2x=\sqrt{3a^2-4x^2}\Leftrightarrow x=\frac{a\sqrt{6}}{4}\).