Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của Bc, D là điểm thuộc đoạn BM. Kẻ BH,CI vuông góc với AD lần lượt tại H và I. Tính HI biết MI=2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}\right)-2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}\)
\(=\frac{2a}{\sqrt{a-4}}\)
Ta có:
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)
\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)
\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)
Thay x = 2016 vào ta được giá trị biểu thức trên bằng 1
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\) (1)
Thay 2017 = x+1 vào (1) ,có :
\(x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
= \(x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
= 1
TA CÓ:
A = \(\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{2016}{2^{2017}}\)
=> 2A = \(\frac{2.1}{2^2}+\frac{2.2}{2^3}+...+\frac{2016.2}{2^{2017}}\)
= \(\frac{1}{2}+\frac{2}{2^2}+...+\frac{2016}{2^{2016}}\)
=> 2A - A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)
=> A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)
ĐẶT B = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
TA CÓ 2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
=> 2B - B = B = \(1-\frac{1}{2^{2016}}< 1\)
=> A < 1 ( ĐPCM)
Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a\ge b\ge1\\c\ge d\ge1\end{cases}}\)
Theo đề bài thì \(\hept{\begin{cases}a+b=cd\\ab=c+d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b\ge c\\ab\le2c\end{cases}}\)
\(\Rightarrow a+b\ge c\ge\frac{ab}{2}\)
\(\Rightarrow ab\le2\left(a+b\right)\le4a\)
\(\Rightarrow1\le b\le4\)
Tương tự ta cũng tìm được
\(1\le d\le4\)
Kết hợp lại rồi lập bảng chọn ra giá trị thỏa mãn là xong.
Gọi 5 số đó là: a,b,c,d,e.
Vì tổng của 3 số bất kì trong 5 số đó không âm nên trong 5 số có tối đa 2 số âm.
Ta xét 3 trường hợp.
TH 1 tất cả đều không âm
\(\Rightarrow\)Số bé nhất là 0.
TH 2: Có 1 số âm. Giả sử \(a\ge b\ge c\ge d\ge0>e\)
Ta có: (a + b);(a + c); (a + d); (b + c); (b + d); (c + d) \(\ge\)- e
Theo đề bài thì
a + b + c + d + e = 18
\(\Leftrightarrow3\left(a+b+c+d\right)=54-3e\)
\(\Leftrightarrow54-3e=\left(a+b\right)+\left(a+c\right)+\left(a+d\right)+\left(b+c\right)+\left(b+d\right)+\left(d+e\right)\ge-6e\)
\(\Leftrightarrow54\ge-3e\)
\(\Leftrightarrow e\ge-18\)
\(\Rightarrow\)Số bé nhất là - 18.
TH 3: có 2 số âm. Làm tương tự
Sa đó chọn số bé nhất trong 3 trường hợp là số cần tìm.
TH 3: Có 2 số âm. Giả sử \(a\ge b\ge c\ge0>d\ge e>d+e\)
Vì tổng 3 số không âm nên ta có
a,b,c \(\ge\)- (d + e)
Theo đề bài thì
a + b + c + d + e = 18
\(\Leftrightarrow\)a + b + c = 18 - (d + e)
\(\Leftrightarrow\)18 - (d + e) \(\ge\)- 3(d + e)
\(\Leftrightarrow\)18 \(\ge\)- 2(d + e)
\(\Leftrightarrow\)(d + e) \(\ge\)- 9
\(\Rightarrow\)e > - 9
Kết hợp 3 trường hợp thì chọn số nhỏ nhất là - 18
AB cắt CD tại M. CD cắt EF tại N. EF cắt GH tại P. AB cắt GH tại Q.
Ta có: \(\widehat{ABC}+\widehat{BCD}=\widehat{DMB}\)(do DMB là góc ngoài của tam giác MBC).
Tương tự, ta có:
\(\widehat{D}+\widehat{E}=\widehat{ENC}\)
\(\widehat{F}+\widehat{G}=\widehat{GPE}\)
\(\widehat{GHA}+\widehat{HAB}=\widehat{AQG}\)
Mà DMB,ENC,GFE,AQG là các góc ngoài của tứ giác MNPQ nên tổng của chúng bằng 360 độ
hay:\(\widehat{B}+\widehat{C}+\widehat{D}+\widehat{E}+\widehat{F}+\widehat{G}+\widehat{GHA}+\widehat{HAB}=360^0\)
Mà\(\widehat{I}+\widehat{AHI}+\widehat{HAI}=180^0\)(tổng 3 góc trong tam giác), nên ta có điều cần chứng minh.
Bạn Lâm Duy Bảo làm đúng rồi.Lần sau bạn cố gắng vẽ hình để mọi người dễ hình dung nhé.Mình tạm chấp nhận định lí "Tổng các góc ngoài của tứ giác bằng 3600" tuy lớp 7 chưa được dùng.Đây là hình minh họa bài làm của bạn :
CÁCH LỚP 9
TA CÓ GÓC BDA = TAN 1/2
GÓC BCA = TAN 1/3
SỬ DỤNG MÁY TÍNH CẦM TAY => GÓC BDA + GÓC BCA = TAN 1/2 + TAN 1/3 = 90
VẬY ĐÁP ÁN BẰNG 90
\(\widehat{CAI}+\widehat{A_1}=90^0\)mà \(\Delta CAI\)vuông tại I có \(\widehat{CAI}+\widehat{C_1}=90^0\Rightarrow\widehat{A_1}=\widehat{C_1}\)
\(\Delta CAI,\Delta ABH\)lần lượt vuông tại I,H có CA = AB ; \(\widehat{C_1}=\widehat{A_1}\)(cmt)\(\Rightarrow\Delta CAI=\Delta ABH\left(ch-gn\right)\)=> CI = AH ; AI = BH
\(\Delta ABC\)vuông cân tại A có \(\widehat{B_2}=45^0\)và trung tuyến AM cũng là đường cao và là phân giác
\(\Rightarrow\widehat{MAB}=45^0\Rightarrow\Delta MAB\)vuông cân tại M => MA = MB
\(\Delta AMD,\Delta BHD\)lần lượt vuông tại M,H có \(\hept{\begin{cases}\widehat{A_2}+\widehat{D_1}=90^0\\\widehat{B_1}+\widehat{D_2}=90^0\\\widehat{D_1}=\widehat{D_2}\left(đđ\right)\end{cases}\Rightarrow\widehat{A_2}=\widehat{B_1}}\)
\(\Delta AIM,\Delta BHM\)có AI = BH ; AM = BM ; \(\widehat{A_2}=\widehat{B_1}\Rightarrow\Delta AIM=\Delta BHM\left(c.g.c\right)\)=> IM = HM (1)
\(\widehat{M_1}=\widehat{M_3}\)mà \(\widehat{M_1}+\widehat{M_2}=90^0\Rightarrow\widehat{M_3}+\widehat{M_2}=90^0\Rightarrow\widehat{IMH}=90^0\left(2\right)\)
Từ (1) và (2),ta có \(\Delta IMH\)vuông cân tại M nên \(HI=\sqrt{2}MI=2017\sqrt{2}\)
đáp là 336 đó bạn