Tìm tất cả bộ ba số nguyên dương thỏa mãn :
\(2^x+1=7^y+2^z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Trong 12 số sẽ có 9 số lớn hơn 5
=> Luôn chia cho 3 dư 1 hoặc dư 2
Vậy trong 12 số luôn tồn tại a1 - a2 sao cho a1 - a2 chia hết cho 2
Và a3 - a4 : a5 - a6 sao cho a3 - a4 ; a5 - a6 chia hết cho 30
Do đó tích trên chia hết cho 2 . 30 . 30 = 1800
* Nguồn : Câu hỏi tương tự
Mk ghi cho bn đỡ ph vô đó thui :P
#~Will~be~Pens~#
Ta đã biết 3 số nguyên tố đầu tiên trong tập số nguyên tố là: 2, 3, 5
Do đó trong 12 số nguyên tố phân biệt bất kì luôn có ít nhất 9 số lớn hơn 5 và 9 số trên chia cho 3 dư 1 , 2.
=> Theo nguyên lí Dirichlet, tồn tại ít nhất 5 số nguyên tố đồng dư với nhau theo mod 3 ( nghĩa là tồn tại ít nhất 5 số có cùng số dư khi chia cho 3), 5 số trên không chia hết cho 5
=> Trong 5 số trên có ít nhất 2 số giả sử là a1 và a2 có cùng số dư khi chia cho 5 hay \(a_1\equiv a_2\left(mod5\right)\)
Và \(a_1\equiv a_2\left(mod3\right)\)
a1, a2 lẻ => \(a_1\equiv a_2\left(mod2\right)\)
mà (5, 2, 3) =1
=> \(a_1\equiv a_2\left(mod30\right)\Leftrightarrow a_1-a_2⋮30\)
Xét 7 số trong 9 số còn lại:
Theo nguyên lí Dirichlet tồn tại 4 đồng dư với nhau theo mod 3, Xét 4 số trên khi chia cho 5
TH1: tồn tại hai số a3, a4 sao cho : \(a_3\equiv a_4\left(mod5\right)\)
mặt khác tương tự như trên ta cũng có \(a_3\equiv a_4\left(mod30\right)\Leftrightarrow a_3-a_4⋮30\)
Lấy hai số bất kì a5, a6 trong 5 số còn lại, ta có: \(a_5+a_6⋮2\)
và 2.30.30=1800
Vậy \(\left(a_1-a_2\right)\left(a_3-a_4\right)\left(a_5+a_6\right)⋮1800\)
TH2: 4 số trên khi chia cho 5 có số dư lần lượt là 1, 2, 3, 4
G/s: \(a_5\equiv1\left(mod5\right);a_6\equiv4\left(mod5\right)\Rightarrow a_5+a_6\equiv5\left(mod5\right)\Rightarrow a_5+a_6⋮5\)
và a5, a6 lẻ \(\Rightarrow a_5+a_6⋮2\)
\(\Rightarrow a_5+a_6⋮10\)
Mặt khác : lấy hai số a3, a4 còn lại ta có: \(a_3\equiv a_4\left(mod3\right)\Rightarrow a_3-a_4⋮3\)
và a3, a4 lẻ => \(a_3-a_4⋮2\)
=> \(a_3-a_4⋮6\)
Ta có: 30.10.6=1800
vậy \(\left(a_1-a_2\right)\left(a_3-a_4\right)\left(a_5+a_6\right)⋮1800\)
Í em mới lớp 7 thôi hả
Vậy mà giỏi đến mức được làm công tác viên òi
Tức là chị là chị của công tác viên hí hí
~ lớp 8 ~
Lớp 7 nhưng chịu quá nhiều tai tiếng ạ,vs như lúc đó ko thuộc hằng đẳng thức bình phương của một tổng,làm xàm thế là...
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)
Thế vào bài toán trở thành
Cho: \(\frac{x+z}{xz}+\frac{x+y}{xy}+\frac{y+z}{yz}=2013\left(1\right)\)
Tính \(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Từ (1) ta có
\(\left(1\right)\Leftrightarrow\frac{xy+yz+zx+yz+xy+zx}{xyz}=2013\)
\(\Leftrightarrow\frac{2\left(xy+yz+zx\right)}{xyz}=2013\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
Ta lại có
\(M=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=\frac{2013}{2}\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-a\right)\left(b-c\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{1}{a-b}-\frac{1}{a-c}+\frac{1}{b-c}-\frac{1}{b-a}+\frac{1}{c-a}-\frac{1}{c-b}\)
\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=2013\)
\(\Rightarrow M=\frac{2013}{2}\)
\(f\left(x\right)\)có hai nghiệm là x=-1 và x=1
ta có: \(f\left(1\right)=0\Leftrightarrow1^3+a+b-2=0\Leftrightarrow a+b=1\)(1)
\(f\left(-1\right)=\left(-1\right)^3+a\left(-1\right)^2+b\left(-1\right)-2=0\Leftrightarrow a-b=3\)(2)
Từ (1) VÀ (2) TA CÓ: \(a=\frac{1+3}{2}=2;b=\frac{1-3}{2}=-1\)
b)Đề bài tìm số chính phương có bốn chữ số khác nhau ?
Đặt : \(\overline{abcd}=n^2;\overline{dcba}=m^2\)(g/s m, n là các số tự nhiên)
Theo bài ta có các giả thiết sau:
\(1000\le m^2,n^2\le9999\Rightarrow32\le m;n\le99\)(1)
\(m^2⋮n^2\Rightarrow m⋮n\)(2)
=> Đặt m=kn (k là số tự nhiên, K>1)
Ta có: \(\hept{\begin{cases}32\le n\le99\\32\le m\le99\end{cases}\Rightarrow}\hept{\begin{cases}32.k\le kn\le99k\\32\le kn\le99\end{cases}\Rightarrow}32k\le kn\le99\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Vậy nên k=2 hoặc bằng 3
Vì \(m=kn\Rightarrow m^2=k^2.n^2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
+) Với k=2
Ta có: \(\overline{dcba}=4.\overline{abcd}\)
Vì \(\overline{abcd};\overline{dcba}\)là các số chính phương có 4 chữ số khác nhau \(\Rightarrow d,a\in\left\{1;4;6;9;\right\}\)
và \(\overline{dcba}⋮\overline{abcd}\)nên d>a(2)
@) Khi \(a\ge4\Rightarrow\overline{dcba}\ge4.\overline{4bcd}>9999\)(loại)
Nên a=1.
Ta có: \(\overline{dcb1}=4.\overline{1bcd}\)vô lí vì không có số \(d\in\left\{1;4;6;9;\right\}\)nhân với 4 bằng 1
+) Với K=3
tương tự lập luận trên ta có a=1
Ta có: \(\overline{dcb1}=9.\overline{1bcd}\)=> d=9
Ta có: \(\overline{9cb1}=9.\overline{1bc9}\Leftrightarrow9000+c.100+b.10+1=9\left(1000+b.100+c.10+9\right)\)
\(\Leftrightarrow10c=890b+80\Leftrightarrow c=89b+8\)vì c, b là các số tự nhiên từ 0, đến 9
=> b=0; c=8
=> Số cần tìm 1089 và 9801 thỏa mãn với các điều kiện bài toán
Ây za cách này khá là cùi bắp nhưng mà em tham khảo nhé:
Lấy điểm K đối xứng với C qua O
Xét tam giác CKB có: O là trung điểm CK , M là trung điểm BC
Gọi N là điểm đối xứng với O qua M
Tam giác OCM=tam giác NBM
=> OC//BN
OC=BN
Tam giác OBN = tam giác BOK (1)
=> ON=KB
mà OM=1/2ON
=> OM=1/2KB
Từ (1) suy ra đc OM//KB
mà OM//AH ( cùng vuông Bc)
=> KB//AH (3)
Chứng minh tương tự => BH//KA (4)
Từ (3), (4) chứng minh đc tam giác KBA=HAB
=> KB=HA
=> OM=1/2 AH
Sử dụng định lí Ta let
OM//AH=> \(\frac{GM}{AG}=\frac{OM}{AH}=\frac{1}{2}\)
mà AM là đường trung tuyến
=> G là trọng tâm.
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+nh%E1%BB%8Dn,+AD+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC+t%E1%BA%A1i+D.+X%C3%A1c+%C4%91%E1%BB%8Bnh+I,+J+sao+cho+AB+l%C3%A0+trung+tr%E1%BB%A5c+c%E1%BB%A7a+DI;+AC+l%C3%A0+trung+tr%E1%BB%B1c+c%E1%BB%A7a+DJ;+IJ+c%E1%BA%AFt+AB,+AC+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+%E1%BB%9F+L+v%C3%A0+K.+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:++Tam+gi%C3%A1c+AIJ+c%C3%A2n.DA+l%C3%A0+tia+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+LDK.N%E1%BA%BFu+D+l%C3%A0+1+%C4%91i%E1%BB%83m+t%C3%B9y+%C3%BD+tr%C3%AAn+BC.+Ch%E1%BB%A9ng+minh+s%E1%BB%91+%C4%91o+g%C3%B3c+IAJ+kh%C3%B4ng+%C4%91%E1%BB%95i+v%C3%A0+v%E1%BB%8B+tr%C3%AD+D+tr%C3%AAn+BC+%C4%91%E1%BB%83+IJ+nh%E1%BB%8F+nh%E1%BA%A5t.&id=32357
Bạn xem ở link này nhé
Anh - Em = 8
[Anh 5 năm trước] bằng tuổi anh hiện nay trừ 5 tuổi
[Em 8 năm sau] bằng tuổi em hiện nay cộng thêm 8 tuổi
Khi đó hiệu tuổi anh và em giảm 5 + 8 = 13 tuổi, giảm hơn chênh lệch tuổi anh và em hiện nay (chênh lệch giữa tuổi anh và em hiện nay là 8 tuổi)
=> [Em 8 năm sau] hơn [Anh 5 năm trước] là 13 - 8 = 5 tuổi.
Tỉ lệ: [Em 8 năm sau] và [Anh 5 năm trước] bằng 4 : 3
Đây là bài toán tìm 2 số biết hiệu và tỉ.
Gọi [Anh 5 năm trước] là 3 phần thì [Em 8 năm sau] là 4 phần.
=> Hiệu là: 4 - 3 = 1 phần và bằng 5 tuổi
=> 1 phần = 5 tuổi
=> [Anh 5 năm trước] = 3 phân x 5 = 15 tuổi
[Em 8 năm sau] = 4 phần x 5 = 20 tuổi
=> [Anh hiện nay] = 15 + 5 = 20 tuổi (vì 5 năm trước đã là 15 tuổi)
[Em hiện nay] = 20 tuổi - 8 = 12 tuổi (Vì 8 năm sau là 20 tuổi)
Đáp số: Anh: 20 tuổi, em: 12 tuổi
Gọi tuổi anh là x (tuổi); tuổi em là y (tuổi)
Độ tuổi anh cách đây 5 năm; tuổi em sau 8 năm tỉ lệ với 3 và 4 nên ta có:
(x-5)/3 = (y+8)/4
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
(x-5-y-8)/3-4 = (8-13)/-1 = -5/-1 =5
(x-5)/3 = 5 suy ra x = 20
(y+8)/4 = 5 suy ra y = 12
Vậy tuổi anh là 20 tuổi ; tuổi em là 12 tuổi.
là em số 1 bởi vì lần nào em số 1 cũng được giữ lại đầu tiên
k cho mk nha
Em làm cô vui lòng xem giúp em ạ
Có: \(x,y,z>0\)
Nên: \(7^y>1\)
Mà \(7^y+2^z=2^x+1\)(1)
\(\Leftrightarrow2^x>2^z\Rightarrow x>z\)
Xét TH1: y lẻ
Có: \(\left(1\right)\Leftrightarrow2^x-2^z=7^y-1\)
\(\Leftrightarrow2^z\left(2^{x-z}-1\right)=7^y-1\)
Có: y lẻ nên: \(7^y-1=\left(7-1\right)\cdot A=6A⋮6\)
\(\Leftrightarrow7^y-1\equiv2\)(mod 4)
Vì thế: \(2^z=2\)\(\Rightarrow z=1\)(vì với z>1 thì \(2^z\equiv0\)(mod 4)
Thay vào PT: \(2^x-2=7^y-1\)
\(\Leftrightarrow2^x=7^y+1\)
\(\Leftrightarrow2^x=\left(7+1\right)\left(7^{y-1}-7^{y-2}+...-7+1\right)\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7+1\right)=8B\)
Vì B lẻ nên: \(2^x=8\)\(\Rightarrow x=3\)\(\Rightarrow y=1\)
Được: \(\left(x;y;z\right)=\left(3;1;1\right)\)
TH2: Khi y chẵn:
\(2^z\left(2^{x-z}-1\right)=7^y-1\)
Vì y chẵn nên:
\(2^z\left(2^{x-z}-1\right)=\left(7+1\right)\left(7-1\right)C=48C=16\cdot3C\)
Vì: \(2^{x-z}-1\equiv1\)(mod 2)
Nên: \(2^z=16\Rightarrow z=4\)
Thế vào:
\(2^x+1=7^y+16\)
\(\Leftrightarrow2^x=7^y+15\)
\(\Leftrightarrow2^x=7^y+7+8\)
\(\Leftrightarrow2^x=7\left(7^{y-1}+1\right)+8\)
\(\Leftrightarrow2^x=7\cdot8\cdot\left(7^{y-2}-7^{y-3}+...-7+1\right)+8\)
\(\Leftrightarrow2^x=8\left(7^{y-1}-7^{y-2}+...-7^2+7+1\right)=8S\)
Vì S chia hết cho 8
nên: \(2^x=64P\Rightarrow2^x=64\Rightarrow x=6\)
\(\Rightarrow y=2\)
Vì thế: \(\left(x;y;z\right)=\left(6;2;4\right)\)
Vậy: \(\left(x;y;z\right)=\left(6;2;4\right);\left(3;1;1\right)\)
\(3\)
\(1\)
\(1\)