Một cửa hàng bán một số dụng cụ cắt tỉa rau củ. Nếu bán với giá 90 ( nghìn đồng) 1 bộ thì lỗ 110 nghìn đồng . Còn nếu bán với giá 110 nghìn đồng 1 bộ thì lời 90 nghìn đồng . Hỏi có bao nhiêu bộ được bày bán ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này mình biết:
Dễ thấy p>2 nên p lẻ
Vì p vừa là tổng, vừa là hiệu của 2 số nguyên tố nên 1 số phải chẵn còn số kia lẻ.Số chẵn là 2
Như vậy p=a+2=b-2(a,b là các số nguyên tố)
Mà a=p-2;p;b=p+2 là 3 số lẻ liên tiếp nên có 1 số chia hết cho 3.Vậy phải có 1 số bằng 3.
Nếu a=3=>p=5;b=7
Nếu p=3 =>a=1(ko là số nguyên tố)
Nếu b=3 =>p=1(ko là số nguyên tố)
Vậy số nguyên tố cần tìm là 5
nếu p =tổng 2 số nguyên tố lẻ =>p chia hết cho 2(trái giả thuyết)
=>p=2+k(k là 1 số nguyên tố lẻ )
nếu p =hiệu 2 số nguyên tố lẻ =>p chia hết cho 2(trái giả thuyết)
=>p=m(m là 1 số nguyên tố lẻ) -2
nếu k=3=>p=5=2+3=7-2 (thỏa mãn)
nếu k=3q+1=>p=3q+1+2=3q+3=3(q+1) là hợp số (trái giả thuyết)
nếu k=3q+2=>m=3q+2+2+2=3q+6=3(q+2) là hợp số (trái giả thuyết)
vậy p=5
*Một số tn bất kỳ khi chia cho 2015 có số dư là 1 trong 2014 số :.....
*Sau đó ta chia 1010 thành 1009 nhóm
*Theo nguyên lý Dirichlet ta có 2 trường hợp
Ta có ĐPCM
Giả sử 6 số đó tồn tại 1 cặp có cùng tận cùng (Ví dụ 1236, 26), vậy hiệu chia hết cho 5. Thỏa mãn
Giả sử không có cặp số nào cùng tận cùng, vậy các chữ số tận cùng có thể là: 1, 2, 3, 4, 6, 7, 8, 9
Các cặp có hiệu chia hết cho 5 là: 6 - 1, 7 - 2, 8 -3, 9 - 4, nếu bỏ đi 2 số bất kỳ vẫn tồn tại 2 cặp có hiệu chia hết cho 5. CM xong!
Dạng phân tích ra thừa số nguyên tố của n là:\(a^x.b^y\left(a,y\ne0\right)\)
Ta có \(n^2=a^{2x}.b^{2y}\)có (2x+1)(2y+1) ước số nên (2x+1)(2y+1)=21 ước
Giả sử \(\orbr{\begin{cases}x< y\\x=y\end{cases}}\)
Ta được x=1, y=3
\(n^3=a^{3x}.b^{3y}\)có (3x+1)(3y+1)ước
=> Có 4.10=40 ước
Nếu x < 0 thì VT = 20 : 2-x.(2y + 2017) =\(\frac{2y+2017}{2^{-x}}\)
2y + 2017 lẻ ; 2-x chẵn nên\(VT\notin Z\)mà\(VP\in Z\)(vô lí)
Nếu x = 0 thì pt <=> 2y + 2017 = 1 <=> y = -1008
Nếu x > 0 thì x2 : 4 dư 0 hoặc 1 theo tính chất số chính phương => VP = VT không chia hết cho 4
=> 2x < 22 => 0 < x < 2 => x = 1 => 2(2y + 2017) = 2 => 2y + 2017 = 1 => y = -1008
Vậy (x ; y) = (0 ; -1008) ; (1 ; -1008)
vì 2017 là số rất lớn nên y\(\in\)số âm
\(\Rightarrow\)y = -1008\(\in\)Z
ta có: 2x .1 = x2 + 1
\(\Rightarrow\)x = 1\(\in\)Z
Ta có: abc = 100.a + 10.b +c = n^2 ‐ 1 ﴾1﴿
cba = 100.c + 10.b + a = n^2‐ 4n + 4 ﴾2﴿
Lấy ﴾1﴿ trừ ﴾2﴿ ta được:
99.﴾a – c﴿ = 4n – 5
Suy ra 4n ‐ 5 chia hết 99
Vì 100 ≤ abc ≤ 999 nên:
100 ≤ n^2 ‐1 ≤ 999 => 101 ≤ n^2 ≤ 1000 => 11 ≤ 31 => 39 ≤ 4n ‐ 5 ≤ 119
Vì 4n ‐ 5 chia hết 99 nên 4n ‐ 5 = 99 => n = 26 => abc = 67
Ta có :
\(S=5+5^2+5^3+...+5^{2016}+5^{2017}\)
\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2013}+5^{2014}+5^{2015}+5^{2016}\right)+5^{2017}\)
\(=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2012}\left(5+5^2+5^3+5^4\right)+5^{2017}\)
\(=\left(1+5^4+5^8+...+5^{2012}\right)\left(5+5^2+5^3+5^4\right)+5^{2017}\)
\(=\left(1+5^4+5^8+...+5^{2012}\right).65.12+5^{2017}\)
Ta có :
\(5^4\text{≡}1\left(mod13\right)\)
\(\Rightarrow\left(5^4\right)^{504}\text{≡}1^{504}\left(mod13\right)\)
\(\Rightarrow5^{2016}\text{≡}\left(mod13\right)\)
\(\Rightarrow5^{2017}\text{≡}5\left(mod13\right)\)
Lại có :
\(\left(1+5^4+5^8+...+5^{2012}\right).65.12\text{ }\text{⋮}65\)
\(5^{2017}\)không chia hết cho 65
\(\Rightarrow\left(1+5^4+5^8+...+5^{2012}\right).65.12+5^{2017}\)không chia hết cho 65
\(\Rightarrow S\)không chia hết cho 65
Vậy \(S\)không chia hết cho 65
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2015}+5^{2016}\right)+5^{2017}\)
\(S=130+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+...+5^{2014}\left(5+5^2\right)+5^{2017}\)
\(S=130+5^2.130+5^4.130+...+5^{2014}.130+5^{2017}\)
\(S=130\left(1+5^2+5^4+...+5^{2014}\right)+5^{2017}\)
Vì \(S=130\left(1+5^2+5^4+...+5^{2014}\right)\)chia hết cho 65 nhưng \(5^{2017}\)không chia hết cho 65
=> \(S=130\left(1+5^2+5^4+...+5^{2014}\right)+5^{2017}\)không chia hết cho 65
Vậy \(5+5^2+5^3+5^4+5^5+...+5^{2017}\)Không chia hết cho 65
de phep chia ko con du va thuong giam di 1 don vi thi a phai giam di : 25 + 13 = 38
Gọi số bộ được bày bán là x. Ta có:
\(90x+110=110x-90\)(nghìn)
Từ đó ta suy ra được: \(90x+200=110x\)
Mà \(200=20x\)
\(\Rightarrow x=200:20=10\)(bộ)
Đáp số: 10 bộ
Gọi số bộ được bày bán là a(bộ)
Theo đề bài ta có: 90a + 110 = 110a -90 ( nghìn đồng)
=> 90a + 200 = 110a
=> 200 = 20a
=> a = 200/20
=> a =10
Vậy có 10 bộ được bày bán