Cho hình chữ nhật ABCD. Lấy điểm E trên cạnh CD , điểm F trên cạnh AD sao cho C và F đối xứng nhau qua BE .Gọi Q là giao điểm của AB và EF. Chứng minh rằng
a) ∆AQF~∆FAB
b) QC vuông góc với BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
ôi câu hỏi hay có khác j câu này Câu hỏi của Lê Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
Hinh thang ABCS,day nho AB day lon CD giao diem cua 2 hinh thang cheo la O ke daon thang qua O va song song voi duong cao cua hinh thang cat AB tai M, CD tai N duong cao cua ADCD la AH.Nen MN=AH
Hinh thang ABCD can nen tam giac AOB va DOC can nen MN la trung diem cua AB va CD. OM la trung tuyen tam giac vuong AOB nen OM =1/2 AOB tuong tu co ON=1/2 CD nen MN = (AB+CD):2 Duong trung binh hinh thang cung bang (AB+CD):2 Do da duong trung binh hinh thang bang MN=AH=10cm
a) Ta thấy: CD = AE (cùng bằng AB)
ND = NA (vì N là trung điểm của AD)
=> CN = NE => N là trung điểm của CE
Vậy MN là đường trung bình của tam giác CEB => MN // EB
b) Theo câu a) MN //EB => \(\widehat{MNC}=\widehat{BEC}\) (đồng vị)
Mà tam giác ABC vuông cân tại A nên \(\widehat{BEA}=45^o\)
Vậy \(\widehat{MNC}=45^o\)
Gọi nửa quãng đường là \(x\) thì cả quãng đường là \(2x\).
Thời gian người đó đ nửa quãng đường đầu là: \(\frac{x}{45}\), đi nửa quãng đường sau là \(\frac{x}{v_2}\) .
Thời gian người đó đi cả quãng đường là: \(\frac{2x}{36}\).
Vậy ta có: \(\frac{x}{45}+\frac{x}{v_2}=\frac{2x}{36}\)
\(\Rightarrow\frac{1}{45}+\frac{1}{v_2}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{v_2}=\frac{1}{18}-\frac{1}{45}=\frac{1}{30}\)
\(\Rightarrow v_2=30\)
Vận tốc trung bình trên cả đoạn đường :
vtb=S / S2.v1+S2.v2=2.v1.v2 / v1+v2.(km/h)
Mà vtb = 8, v1 = 12 nên v2 = 6 km/h.
Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\) (1)
Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\) (2)
Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\) (Với g(x) , h(x), t(x) là các đa thức)
Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)
Theo (1) thì b - a = 5.
Ta cũng có :
\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)
Theo (2) thì b + 2a = 7.
Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)
Trên tia đối của ED lấy điểm K sao cho E là trung điểm của DK.
Xét \(\Delta\)DAE=\(\Delta\)KBE (c.g.c) => AD=BK (2 cạnh tương ứng)
Mà AD=BC => BK=BC => \(\Delta\)BKC cân tại B => ^BCK=(1800-^KBC)/2 (1)
Lại có: ^DAE=^KBE (2 góc tương ứng) => AD//BK (2 góc so le trg bằng nhau)
hay OH//BK => ^HOG=^KBC ( Đồng vị) (2)
E là trung điểm DK; F là trung điểm DC => EF là đường trung bình \(\Delta\)DKC
=> EF//KC hay HG//KC => ^OGH=^BCK (3)
Thay (2) và (3) vào (1); ta được: ^OGH=(1800-^HOG)/2 => \(\Delta\)HOG cân tại O
=> OG=OH (đpcm)
ab . cde = edcba
= (10a + b ) . (100c + 10d + e) = edcba
= 10 . (100 + 10) . (a + b + c + d + e)
= 10 . 110 . (a + b + c + d + e)
=1100 . (a + b + c + d + e)
=> Số abcde có dạng 1100(a + b + c + d + e)
Và edcba có dạng 1100(e + d + c + b + a)
Sau đó làm tiếp tí nữa là xong! Mình mới học lớp 6 nên chỉ gợi ý cách làm cho bạn được thôi!
\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
\(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu - nhi - a ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
\(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
\(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
\(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.
a) Do F đối xứng với C qua BE nên EB là đường trung trực của FC.
Vậy thì ta có ngay \(\Delta BFE=\Delta BCE\left(c-c-c\right)\Rightarrow\widehat{BFE}=\widehat{BCE}=90^o\)
Vậy thì \(\widehat{AFB}+\widehat{DFE}=90^o\)
Lại có góc DFE và góc AFQ là hai góc đối đỉnh nên \(\widehat{AFB}+\widehat{AFQ}=90^o\Rightarrow\widehat{AFB}=\widehat{AQF}\)
Vậy \(\Delta AQF\sim\Delta AFB\left(g-g\right)\)
b) Từ E kẻ \(EJ\perp QB\). Khi đó ta có EJ = BC. Gọi I là giao điểm của QC và BD.
Do AF// JE nên \(\Delta AQF\sim\Delta JQE\). Vậy thì \(\Delta JQE\sim\Delta DEF\left(\sim\Delta AQF\right)\)
\(\Rightarrow\frac{JE}{DF}=\frac{QE}{EF}\)
Hay \(\frac{BC}{DF}=\frac{QE}{EF}\Rightarrow\frac{BF}{DF}=\frac{QE}{EC}\left(1\right)\) (Do BE là trung trực nên BC = BF, FE = EC)
Ta cũng đã có \(\widehat{FED}=\widehat{AFB}\Rightarrow\widehat{QEC}=\widehat{BFD}\left(2\right)\)
Từ (1) và (2) suy ra \(\Delta QEC\sim\Delta BFD\left(c-g-c\right)\)
\(\Rightarrow\widehat{FQC}=\widehat{FBD}\)
Lại có \(\widehat{BFQ}=\widehat{BFA}+\widehat{AFQ}=90^o\)
Vậy nên \(\widehat{FQB}+\widehat{QBF}=\widehat{FQC}+\widehat{CQB}+\widehat{QBF}=\widehat{CQB}+\widehat{QBD}=90^o\)
Suy ra \(\widehat{AIB}=90^o\Rightarrow QC\perp BD.\)