K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Giải chi tiết:

a) Chứng minh tứ giác AEHF và BCEF nội tiếp.

Ta có ∠AEH=∠AFH=90o⇒∠AEH=∠AFH=90o⇒ E, F thuộc đường tròn đường kính AH

⇒⇒ A, E, H, F cùng thuộc một đường tròn

⇒AEHF⇒AEHF là tứ giác nội tiếp (dhnb).

Ta có ∠BEC=∠BFC=90o⇒∠BEC=∠BFC=90o⇒ BCEF  là tứ giác nội tiếp (dhnb)

b) Hai đường thẳng EF và BC cắt nhau tại I. Vẽ tiếp tuyến ID với (O)(O)(D là tiếp điểm, D thuộc cung nhỏ BC). Chứng minh ID2=IB.ICID2=IB.IC.

Xét ΔIBDΔIBD và ΔIDCΔIDC có:

∠I∠I  chung

∠IDB=∠ICD∠IDB=∠ICD (ID là tiếp tuyến của (O)(O))

⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).⇒ΔIBD∼ΔIDC(g−g)⇒IDIC=IBID⇒ID2=IB.IC(dpcm).

c) DE, DF cắt đường tròn (O)(O) tại M và N. Chứng minh NM // EF.

Xét ΔIBEΔIBE và ΔIFCΔIFC có:

∠I∠I chung

∠IEB=∠ICF∠IEB=∠ICF (BCEF  là tứ giác nội tiếp)

⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF⇒ΔIBE∼ΔIFC(g−g)⇒IEIC=IBIF⇒IB.IC=IE.IF (kết hợp b)

⇒ID2=IE.IF⇒IDIE=IFID⇒ID2=IE.IF⇒IDIE=IFID 

Xét ΔIDFΔIDF và ΔIEDΔIED có:

∠I∠I chung

 IDIE=IFID(cmt)IDIE=IFID(cmt)

⇒ΔIDF∼ΔIED⇒∠IDF=∠IED⇒ΔIDF∼ΔIED⇒∠IDF=∠IED (2 góc tương ứng)

Mặt khác ∠IDF=∠NMD∠IDF=∠NMD (ID là tiếp tuyến của (O)(O)) ⇒∠IED=∠NMD⇒∠IED=∠NMD (tc)

Mà hai góc này ở vị trí đồng vị ⇒⇒ NM // EF.

28 tháng 4 2020

Cho tam giác ABC nhọn AB

A B C

CHÚC BẠN HỌC TỐT

19 tháng 4 2020

A B C D E I K J H M O

gọi các điểm như trên hình

I là giao 2 đường tiếp tuyến HI và AC=>OI là phân giác góc EOK (1) và IE=IK

C là giao 2 tiếp tuyến AC và BC => OC là phân giác góc KOD (2) và KC=DC

(1) và (2) => tam giác IOC vuông tại O, có đường cao OK =>OK2=IK.KC <=> OK2=IE.DC

CM tương tự ta được OJ2 = EH.BD

\(\text{OK=OJ=r}\) 

=>\(\text{IE.DC=EH.BD}\)

=>\(\frac{EH}{EI}=\frac{CD}{BD}\)

Ta có : \(\text{HI // BC}\)

=>\(\frac{EI}{MC}=\frac{AI}{AC}=\frac{AH}{AB}=\frac{EH}{BM}\)

=> \(\frac{BM}{MC}=\frac{EH}{EI}\)

=>\(\frac{BM}{CM}=\frac{EH}{EI}=\frac{CD}{BD}\)

=> \(1+\frac{BM}{CM}=1+\frac{CD}{BD}\)\(\Leftrightarrow\frac{BC}{CM}=\frac{BC}{BD}\Rightarrow CM=BD\)

19 tháng 4 2020

83110=Hello

13 tháng 10 2019

\(5\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\ge\sqrt{15}\)

\(\frac{x^2}{\sqrt{8x^2+3y^2+14xy}}=\frac{x^2}{\sqrt{8x^2+2xy+3y^2+12xy}}\ge\frac{x^2}{\sqrt{9x^2+12xy+4y^2}}=\frac{x^2}{3x+2y}\)

\(A\ge sigma\frac{x^2}{3x+2y}\ge\frac{\left(x+y+z\right)^2}{5\left(x+y+z\right)}=\frac{x+y+z}{5}\ge\sqrt{\frac{3}{5}}\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{5}{3}}\)

18 tháng 4 2020

h2r r1000

12 tháng 4 2020

ta có

\(0\le\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\left(\forall x,y,z>0\right)\)

\(\Leftrightarrow2xy+2yz+2zx\le2\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)(1)

dấu  = xảy ra khi

\(x=y=z=0\)

theo giả thiết ta có

\(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)

\(\Leftrightarrow x^2+y^2+z^2\le18-\left(x+y+z\right)\left(2\right)\)

từ (1) zà (2) suy ra

\(\left(x+y+z\right)^2\le54-3\left(x+y+z\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-54\le0\)

\(\Leftrightarrow\left(x+y+z-6\right)\left(x+y+z+9\right)\le0\)

\(\Leftrightarrow0< x+y+z\le6\left(do\left(x+y+z>0;9>0\right)\right)\)

áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)ta có

\(P=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{2.6+3}=\frac{3}{5}\)

Dấu = xảy ra khi zà chỉ khi

\(\hept{\begin{cases}x+y+1=y+z+1=z+x+1\\x+y+z=6\end{cases}=>x=y=z=2}\)

zậy MinP= 3/5 khi x=y=z=2

12 tháng 4 2020

Ta có : x(x + 1) + y (y+1 ) + z(z + 1) \(\le18\)

<=> x+ y+ z2 + ( x + y + z ) \(\le18\)

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

=> 54 \(\ge\)( x + y+z)2 + 3(x + y + z) 

<=> -9 \(\le\)x + y + z \(\le\)6

=> 0 \(\le\)x+y+z \(\le\)

\(\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\)

\(\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\)

\(\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\)

=> \(P+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)

=> P \(\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)

Dấu " =" xảy ra khi :

\(\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)

Vậy GTNN của P là \(\frac{3}{5}\)khi x = y =z =2

17 tháng 4 2020

bij ngu af

             33333333333333  ddddddddddddddd

17 tháng 4 2020

bị ngu à

26 tháng 5 2019

kết bạn với mình

26 tháng 5 2019

\(P=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2c+b^2c}{c^3+abc}+\frac{b^2a+c^2a}{a^3+abc}+\frac{c^2b+a^2b}{b^3+abc}\)

\(\ge\frac{a^3}{2abc}+\frac{b^3}{2abc}+\frac{c^3}{2abc}+\frac{2abc}{c^3+abc}+\frac{2abc}{a^3+abc}+\frac{2abc}{b^3+abc}\)

\(=\left(\frac{a^3}{2abc}+\frac{2abc}{a^3+abc}\right)+\left(\frac{b^3}{2abc}+\frac{2abc}{b^3+abc}\right)+\left(\frac{c^3}{2abc}+\frac{2abc}{c^3+abc}\right)\)

Xét: \(\frac{a^3}{2abc}+\frac{2abc}{a^3+abc}=\frac{a^3}{2abc}+\frac{1}{2}+\frac{1}{\frac{a^3}{2abc}+\frac{1}{2}}-\frac{1}{2}\ge2\sqrt{\left(\frac{a^3}{2abc}+\frac{1}{2}\right).\frac{1}{\frac{a^3}{2abc}+\frac{1}{2}}}-\frac{1}{2}=\frac{3}{2}\)

Tương tự với 2 cặp còn lại

Vậy ta có: \(P\ge\frac{3}{2}+\frac{3}{2}+\frac{3}{2}=\frac{9}{2}\)

"=" xảy ra <=> a=b=c

12 tháng 10 2016

Áp dụng bđt Cauchy :

\(\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự : \(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\)

\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân theo vế : \(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\)

Vậy Max abc = 1/8 khi a = b = c = 1/2

14 tháng 10 2016

7894561230++

17 tháng 1 2020

Có: \(x^5+y^2=xy^2+1\)

<=> \(x^5-1=y^2\left(x-1\right)\)(1)

TH1: x = 1 

=> \(1^2+y^2=1.y^2+1\) đúng với mọi y

TH2: \(x\ne1\)

(1) <=> \(y^2=x^4+x^3+x^2+x+1\)

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Có:

+)  \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)

\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)

=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)

+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)

=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)

<=> x = 0 

=> \(y=\pm1\)

TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)

<=> \(2x+3-x^2=0\)

<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Với x = -1 => \(y=\pm1\)

Với x = 3 => \(y=\pm11\)

Kết luận:...

3 tháng 11 2016

Hạ sách : Nhân hết ra :)))

Ta có :

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)

\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2+x^2y^2+\frac{1}{x^2y^2}+2-\left(xy+\frac{x}{y}+\frac{y}{x}+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}\right)\)

\(=x^2+y^2+\frac{1}{x^2y^2}+x^2y^2+\frac{1}{x^2}+\frac{1}{y^2}+6-\left(x^2y^2+1+x^2+\frac{1}{y^2}+y^2+\frac{1}{x^2}+1+\frac{1}{x^2y^2}\right)\)

\(=6-1-1\)

\(=4\)

9 tháng 4 2020

4655000

52266+

533333

6 tháng 4 2020

minh bo tay

6 tháng 4 2020

bó tay rùi