K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)

Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)

Tương tự cho 2 trường hợp còn lại ta có ĐPCM

20 tháng 5 2017

Không mất tính tổng quát ta giả sử \(x\ge y\)

Ta có:

\(x^2< x^2+8y\le x^2+8x< x^2+8x+16=\left(x+4\right)^2\)

\(\Rightarrow x^2+8y=\left(x+1\right)^2or\left(x+2\right)^2or\left(x+3\right)^2\)

PS: Vì e là CTV nên a chỉ gợi ý thôi nha. Phần còn lại e thử tự nghĩ xem sao nhé. A giải quyết cho e phần khó nhất rồi đấy :)

4 tháng 8 2019

Anh Alibaba Nguyễn, giải tìm x ntn vậy, em mới tìm được y thôi

9 tháng 11 2017

A B C M E A K I O N D J

a) Do O là trọng tâm giác tam giác ABC nên \(OE=\frac{1}{2}OC\)

Lại có \(OE=\frac{1}{2}OK\) (Do EK = EO)

Vậy nên OC = OK.

Tương tự OI = OB. Vậy tứ giác BKIC là hình bình hành.

Lại có do tam giác ABC cân tại A nên AO là đường trung trực của BC. Vậy thì OB = OC hay ta suy ra BI = CK

Hình bình hành BKIC có hai đường chéo bằng nhau nên nó là hình chữ nhật.

b) Xét tứ giác BKAO có EK = EO, EA = EB nên BKAO là hình bình hành.

Do BKIC là hình chữ nhật nên OB = OI

Vậy nên AK song song và bằng OI hay AIOK là hình bình hành.

Ta cũng có OK = OI nên AIOK là hình thoi.

c) Gọi J là trung điểm của NC.

Xét tam giác BNC có M là trung điểm BC, J là trung điểm NC nên MJ là đường trung bình hay MJ // BN.

Xét tam giác MNC có MD = ND; NJ = JC nên DJ là đường trung bình hay DJ // MC.

Do \(MC\perp OM\Rightarrow JD\perp OM\)

Xét tam giác OMJ có \(JD\perp OM;MN\perp OJ\) nên D là trực tâm tam giác.

Suy ra \(OD\perp MJ\)

Mà MJ // NB nên \(NB\perp OD.\)

8 tháng 11 2017

\(pt\Leftrightarrow x^3+2000x-1=y^2\Leftrightarrow x^3-x+2001x-1=y^2\Leftrightarrow\left(x-1\right)x\left(x+1\right)+2001x-1=y^2\)

Vì \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮3\\2001x⋮3\end{cases}\Rightarrow}\)(x-1)x(x+1)+2001x-1 chia 3 dư 2 mà y2 chia 3 chỉ dư 0 hoặc 1 nên PT vô nghiệm

Vậy PT không có nghiệm nguyên

8 tháng 11 2017

Nên sửa -2x ở tử thành 2x. Giải như sau :

\(\frac{x^2+2x-1}{2x^2+4x+9}=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{4x^2+8x+18}=\frac{1}{2}-\frac{11}{4\left(x+1\right)^2+14}\)

Biểu thức đạt GTNN khi \(\frac{11}{4\left(x+1\right)^2+14}\)đạt GTLN hay 4(x + 1)2 + 14 đạt GTNN hay khi x = -1

Vậy GTNN của biểu thức là : \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\)khi x = -1

4 tháng 11 2017

Dựng đói xứng là ra, Có trong sách nâng cao lớp 8 bài đối xứng trục, chỉ thay đổi một chút

3 tháng 11 2017

Ta có: \(n^4+\frac{1}{4}=\frac{4n^4+1}{4}=\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)\)

Áp dụng vào bài toán ta được

\(A=\frac{\frac{3.5}{4}.\frac{13.25}{4}...\frac{1625.1741}{4}}{\frac{5.13}{4}.\frac{25.41}{4}...\frac{1741.1861}{4}}=\frac{3}{1861}\)

    

5 tháng 11 2017

Ta có :

    \(n^4+\frac{1}{4}=\frac{4n^4+1}{4}\)

               \(=\left(2n^2+2n+1\right)\left(2n^2-2n+1\right)\)

   áp dụng theo đầubài của bài toán 

        Ta có :

            \(=\frac{\frac{3\times5}{4}\times\frac{13\times25}{4}\times...\times\frac{1625\times1741}{4}}{\frac{5\times13}{4}\times\frac{25\times41}{4}\times...\times\frac{1741\times1861}{4}}=\frac{3}{1861}\)

         

  

1 tháng 11 2017

a) Vì m, n, p là các số tự nhiên lẻ nên ta có thể đặt m = 2a + 1; n = 2b + 1; p = 2c + 1

Khi đó

 \(mn+np+pm=\left(2a+1\right)\left(2b+1\right)+\left(2b+1\right)\left(2c+1\right)+\left(2c+1\right)\left(2a+1\right)\)

\(=4ab+2a+2b+1+4bc+2b+2c+1+4ca+2c+2a+1\)

\(=4\left(ab+bc+ca+a+b+c\right)+3\)

Vậy thì mn + np + pm chia 4 dư 3.

b) Ta chứng minh một số chính phương n chia cho 4 chỉ có thể dư 0 hoặc 1. Thật vậy:

Nếu n là bình phương số chẵn thì n = (2k)2 = 4k2 chia hết 4

Nếu n là bình phương số lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 chia 4 dư 1.

Vậy do mn + np + pm chia 4 dư 3 nên mn + np + pm không là số chính phương.

1 tháng 11 2017

Do đa thức (x - 1)(x - 3) là đa thức bậc hai nên đa thức dư khi chia cho nó sẽ có dạng ax + b

Đặt \(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b\)

Ta có :

\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-1\right)\left(x-3\right)g\left(x\right)+a\left(x-1\right)+\left(a+b\right)\)

\(=\left(x-1\right)\left[\left(x-3\right)g\left(x\right)+a\right]+\left(a+b\right)\)

Do P(x) chia (x - 1) dư 4 nên a + b = 4

\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-3\right)\left(x-1\right)g\left(x\right)+a\left(x-3\right)+\left(3a+b\right)\)

\(=\left(x-1\right)\left[\left(x-1\right)g\left(x\right)+a\right]+\left(3a+b\right)\)

Do P(x) chia (x - 3) dư 14 nên 3a + b = 14

Vậy nên ta tìm được a = 5, b = -1 hay đa thức dư là 5x - 1.