Cho tam giác ABC có các đường cao AD, BE, CF. Đường thẳng qua D và song song với EF cắt AC và AB tại Q và R. Đường thẳng EF cắt BC tại P. Chứng minh rằng đường tròn ngoại tiếp tam giác PQR đi qua trung điểm của BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-x^2+x+2}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{-\left(x-2\right)\left(x+1\right)}\)
\(\Rightarrow x^2+\frac{x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow\frac{x^3+x^2+x}{x+1}=\left(3-x\right)\sqrt{x+1}\sqrt{-x+2}\)
\(\Rightarrow x^3+x^2+x=\left(3-x\right)\left(x+1\right)\sqrt{x+1}\sqrt{2-x}\)
Áp dụng bđt AM-GM ta có
\(x^2-xy+y^2\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{x^2+y^2}{2}\)
\(\Rightarrow\frac{x+y}{x^2-xy+y^2}\le\frac{2\left(x+y\right)}{x^2+y^2}\le\frac{2\sqrt{2\left(x^2+y^2\right)}}{x^2+y^2}=\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)
Dấu "=" xảy ra khi x=y=1
Chứng minh bằng phản chứng.
Giả sử c không phải cạnh nhỏ nhất, hay c lớn hơn hoặc bằng ít nhất một trong hai cạnh còn lại.
Giả sử cạnh đó là b. Ta có: \(b\le c\)
\(\Rightarrow a^2\ge5c^2-b^2\ge5c^2-c^2=4c^2\)
\(\Rightarrow a\ge2c\)
\(\Rightarrow b+c\le c+c=2c\le a\)
\(b+c\le a\) là một điều trái với bất đẳng thức tam giác \(b+c>a\)
Vậy điều giả sử sai.
Hay c là độ dài cạnh bé nhất,
Gọi M, N lần lượt là chân đường cao hạ từ B,C xuống AC,AB
Ta có \(DH.DA=DB.DC\)(1)
Để chứng minh K là trực tâm tam giác IBC ta chứng minh \(DK.DJ=DB.DC\)hay \(DK.DJ=DH.DA\)
Ta có NC,NA lần lượt là phân giác trong và phân giác ngoài của \(\widehat{MND}\)nên
\(\frac{HK}{HD}=\frac{NK}{ND}=\frac{AK}{AH}\)
\(\Rightarrow AK.HD=AD.HK\)
\(\Leftrightarrow HD\left(AD-DK\right)=AD\left(DK-DH\right)\)
\(\Leftrightarrow2.AD.DH=DK\left(DA+DH\right)\)
\(\Leftrightarrow2.AD.DH=2.DK.DJ\)
\(\Rightarrow AD.DH=DK.DJ\left(2\right)\)
Từ (1) và (2) ta có\(DK.DJ=DH.DA\)
=> K là trực tâm của tam giác IBC