Cho tam giác ABC có góc B bằng 2 lần góc C. Kẻ AH vuông góc với BC tại H. Trên tia đối của tia BA lấy D sao cho BD bằng BH. Gọc M là giao điểm của DH và AC>
a, Chứng minh rằng tam giác MHC cân
b, Chứng minh M là trung điểm của AC
nhanh giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên BC lấy điểm H sao cho ^BAH=600
Xét \(\Delta\)ABH: ^ABH=^BAH=600 => \(\Delta\)ABH là tam giác đều
=> AB=AH=BH (1)
Ta có: ^ABI=^ABC-^CBx=600-150=450.
Xét \(\Delta\)BAI: ^BI=900; ^ABI=450 => \(\Delta\)BAI vuông cân tại A => AB=AI (2)
Từ (1);(2) => AH=AI
Tính được ^BAC=1800-600-450=750 => ^HAC=750-^BAH=750-600=150 => ^HAC=150 (3)
Lại có: ^IAC=^BAH-^BAC=900-750=150 (4)
Từ (3) và (4) => ^HAC=^IAC
Xét \(\Delta\)AHC và \(\Delta\)AIC: AH=AI; ^HAC=^IAC; AC chung
=> \(\Delta\)AHC=\(\Delta\)AIC (c.g.c) => ^ACH=^ACI.
Vì ^ACH=450 => ^ACI=450 => ^ACH+^ACI=^ICH=900 hay ^ICB=900
Vậy ^ICB=900.
Chỗ ^IAC=^BAH-^BAC bạn sửa thành ^IAC=^BAI-^BAC nhé. Mình gõ nhầm đấy.
Điều kiện : \(x\ne4\)
Biểu diễn : \(C=\frac{22-3x}{4-x}=\frac{3\left(4-x\right)+10}{4-x}=\frac{10}{4-x}+3\)
Ta có C đạt giá trị lớn nhất \(\Leftrightarrow\frac{10}{4-x}\)đạt giá trị lớn nhất \(\Leftrightarrow4-x\)đạt giá trị nhỏ nhất
Đến đây ta xét các trường hợp :
1. Với \(x>4\Rightarrow4-x< 0\Rightarrow\frac{10}{4-x}< 0\)
2. Với \(0\le x\le3\) \(\Rightarrow\frac{5}{2}\le\frac{10}{4-x}\le10\)
3. Với \(x< 0\), xét \(f\left(x\right)=4-x\) có giá trị càng tăng khi x càng giảm (x < 0) , do đó f(x) nhỏ nhất tại x = -1
\(\Rightarrow\frac{10}{4-x}=2\)
So sánh các trường hợp , được \(MaxC=13\Leftrightarrow x=3\)
Chỉ ra 1 nghiệm của đa thức đúng không
Giả sử d là 1 nghiệm của đa thức thì:
\(\Rightarrow\)f(x) = (x - d)(x2 + mx + n)
= x3 + (m - d)x2 + (n - dm)x - dn = x3+ax2+bx+c
Đồng nhất thức 2 vế ta được
m - d = a; n - dm = b; -dn = c
Thế vào điều kiện đề bài ta được
m - d + 2(n - dm) - 4dn = - 0,5
\(\Leftrightarrow\)2d( 4n + 2m + 1) = (4n + 2m + 1)
\(\Leftrightarrow\)(4n + 2m + 1)(2d - 1) = 0
(Ta không cần quan tâm đến (4n + 2m + 1) vì mục đích ta tìm d thôi)
\(\Rightarrow2d-1=0\)
\(\Leftrightarrow d=\frac{1}{2}\)
Vậy đa thức có 1 nghiệm là \(\frac{1}{2}\)
Xét tam giác ACD có AO, CE là hai đường trung tuyến cắt nhau tại I => I là trọng tâm => \(IO=\frac{1}{2}IA\) và \(IA=\frac{2}{3}OA\)
Tương tự: J là trong tâm tam giác BCD => \(OJ=\frac{1}{2}JE\) và \(JB=\frac{2}{3}OB\).
Theo giả thiết OA = OB => IA = JB và IJ = OI + OJ = AI = JB.
Ta chứng minh bài toán khái quát hóa cảu của bài toán trên bằng cách thay số 2009 bởi số dương k cho trước
Ta có: \(\frac{S_{AME}}{S_{ABD}}=\frac{AM}{AB}.\frac{AE}{AD};\frac{S_{ANE}}{S_{ACD}}=\frac{AN}{AC}.\frac{AE}{AD}\)
Cộng theo vế hai đẳng thức trên, với chú ý \(S_{ABD}=S_{ACD}=\frac{1}{2}S_{ABC}\), ta được:
\(\frac{2S_{AMN}}{S_{ABC}}=\frac{AE}{AD}\left(\frac{AM}{AB}+\frac{AN}{AC}\right)\)
\(\Leftrightarrow2\frac{AM}{AB}.\frac{AN}{AC}=\frac{AE}{AD}\left(\frac{AM}{AB}+\frac{AN}{AC}\right)\)
Chia cả hai vế cho \(\frac{AM}{AB}.\frac{AN}{AC}\) ta được:
\(\Leftrightarrow2=\frac{AE}{AD}\frac{\left(\frac{AM}{AB}+\frac{AN}{AC}\right)}{\frac{AM}{AB}.\frac{AN}{AC}}\)
\(\Leftrightarrow2=\frac{AE}{AD}\left(\frac{AC}{AN}+\frac{AB}{AM}\right)\)
\(\Leftrightarrow\frac{2AD}{AE}=\frac{AB}{AM}+\frac{AC}{AN}=k\) (1)
\(\Leftrightarrow AE=\frac{2AD}{k}\)
Từ đó AE không đổi nên E là điểm cố định. Tức là đường thẳng d luôn đ qua cố định (đpcm)
Giả sử an + bn và ab là 2 số nguyên tố cùng nhau.
=> an + bn và ab cùng chia hết cho 1 số nguyên tố d.
=> an + bn + ab chia hết cho d.
=> a(an-1 + b) + bn chia hết cho d.
=> a(an-1 + b) chia hết cho d.
=> a chia hết cho d (1).
=> an-1 + b chia hết cho d => b chia hết cho d (2).
Từ (1) và (2) => a, b cùng chia hết cho 1 số nguyên tố d (trái với giả thiết a, b là 2 số nguyên tố cùng nhau).
=> an + bn và ab không là 2 số nguyên tố cùng nhau.
Mình nhầm:
Giả sử an + bn không là 2 số nguyên tố cùng nhau. Còn kết quả bạn ghi lại cái đpcm
Gọi H và K là lần lượt là trung điểm của BE và CD thì ta có :
\(\hept{\begin{cases}NE=ND\\HE=HD\end{cases}}\) => HN là đường trung bình của tam giác BED => \(\hept{\begin{cases}HN\text{//}BD\\HN=\frac{1}{2}BD=\frac{1}{2}EC\end{cases}}\)
Tương tự ta cũng chứng minh được NK , KM , HM là các đường trung bình của tam giác DEC, BDC , BEC
Từ đó suy ra HN = NK = KM = MH
Tứ giác HMKN có 4 cạnh bằng nhau nên là hình thoi => góc HNM = góc KNM
Mà HN // AB , NK // AC \(\Rightarrow\hept{\begin{cases}\widehat{HNM}=\widehat{BJM}\\\widehat{KNM}=\widehat{CIM}\end{cases}}\) .Từ đó suy ra điều phải chứng minh.
a) Do P là trung điểm của DE (gt), Q là trung điểm của BE (gt) nên PQ là đường trung bình của tam giác BED, suy ra PQ=12BD.
Chứng minh tương tự MN = 12BD, NP = 12CE và MQ = 12CE.
Mặt khác BD = CE (gt)
Do đó MN = NP = PQ = QM
Vậy tứ giác MNPQ là hình thoi.
b) Do PN // AC, PQ // AB nên QPN^=BAC^ (hai góc có cạnh tướng ứng song song).
Gọi giao điểm của MP với AB là R, ta có ...
Hình như đề đúng phải là: \(\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)bạn xem lại nhé :)))
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{x+y-3}{z}=\frac{\left(x+z+2\right)+\left(y+z+1\right)+\left(x+y-3\right)}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(do \(x+y+z\ne0\)).
Do đó \(\frac{1}{x+y+z}=2\)\(\Rightarrow\)\(x+y+z=0,5\)
Thay kết quả này vào đề bài ta được:
\(\frac{0,5-y+2}{y}=\frac{0,5-x+1}{x}=\frac{0,5-z-3}{z}=2\)
\(\Leftrightarrow\)\(\frac{2,5-y}{y}=\frac{1,5-x}{x}=\frac{-2,5-z}{z}=2\)\(\Leftrightarrow\)\(\frac{2,5}{y}=\frac{1,5}{x}=\frac{-2,5}{z}=3\)
Dễ dàng tính được \(y=\frac{5}{6},\)\(x=\frac{1}{2},\)\(z=\frac{-5}{6}\)
Câu hỏi của Ngân Hoàng Xuân - Toán lớp 8 | Học trực tuyến
a, Ta có \(\Delta ABH\) có góc ngoài là \(\widehat{DBH}\)
=> \(\widehat{DBH}\)\(=90^o+\widehat{BAH}\)
Ta có \(\Delta DBH\)
=> \(180^o-\widehat{DBH}\)\(=\widehat{BDH}+\widehat{BHD}\)
Mà \(\widehat{DBH}=90^o+\widehat{BAH}\)(CMT)\(;\) \(\widehat{BDH}=\widehat{BHD}\)(vì tam giác BHD cân tại B do BH=BD)
=> \(180^o-90^o-\widehat{BAH}=2\widehat{BHD}\)
=> \(\frac{90^o-\widehat{BAH}}{2}=\widehat{BHD}\)
Mà \(\widehat{BHD}=\widehat{MHC}\)( 2 góc đối đỉnh)
=>\(\frac{90^o-\widehat{BAH}}{2}=\widehat{MHC}\)(*)
Ta có: \(\Delta ABH\) vuông tại H
=> \(\widehat{BAH}+\widehat{ABC}=90^o\)
=> \(90^o-\widehat{BAH}=\widehat{ABC}\)
Mà \(\widehat{ABC}=2\widehat{ACB}\)(GT)
=> \(90^o-\widehat{BAH}=\widehat{2ACB}\)
=>\(\frac{90^o-\widehat{BAH}}{2}=\widehat{ACB}\)(**)
Từ *;** => \(\widehat{MHC}=\widehat{ACB}\)
=> Tam giác MHC cân tại M
b, Ta có: \(\Delta ACH\) vuông tại H
=> \(\widehat{HAC}+\widehat{ACB}=90^o\)(1)
Ta có: \(\widehat{AHM}+\widehat{MHC}=90^o\)(2)
Từ 1;2 =>\(\widehat{HAC}+\widehat{ACB}=\widehat{AHM}+\widehat{MHC}\)
Mà \(\widehat{ACB}=\widehat{MHC}\)(CMT)
=> \(\widehat{HAC}=\widehat{AHM}\)
=> Tam giác HAM cân tại M
=> \(MH=MA\)
Mà \(MH=MC\)(Tam giác MHC cân tại M chứng minh trên )
=> \(MA=MC\)
=> M là trung điểm của AC
Hình vẽ đây