Cho a,b,c là số đo 3 cạnh của 1 tam giác vuông với c là số đo cạnh huyền.
Chứng minh rằng:a2n+b2n\(\le\)c2n; n\(\in\)N;n>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phần II
1.- Đoạn văn trên trích từ văn bản "Tinh thần yêu nước của nhân dân ta".
- Phương thức biểu đạt chính: nghị luận
2. Tác giả Hồ Chí Minh viết trong thời kì chiến tranh chống thực dân Pháp.
3. Câu rút gọn:
- Có khi được...dễ thấy. (rút gọn thành phần chủ ngữ, khôi phục chủ ngữ sẽ là "tinh thần yêu nước")
- Nhưng cũng có khi...trong hòm. (rút gọn thành phần CN, khôi phục CN sẽ là "......................................")
- Nghĩa là...kháng chiến. (rút gọn thành phần CN, khôi phục CN sẽ là "bổn phận của chúng ta")
a) câu rút gọn : _ Đã đến Phường Rạch
_ Thành phần đc rút gọn là chủ ngữ
_tác dụng : giúp câu văn ngắn gọn , thông tin đến người đọc (nghe) nhanh .
b) câu rút gọn : _ và ngồi đó rình mặt trời lên
_ còn tối đất cố đi mãi đến đá đầu sư , ra thầu múi đảo .
thành phần đc rút gọn : chủ ngữ
tác dụng : giúp câu văn vừa ngăn gọn , vừa thông tin được nhanh , tránh lặp những từ ngữ đã xuất hiện ở câu đằng trước
Đây là cách của cô Loan. Ngoài ra mình cũng còn một cách ( tự nghĩ ) :) Bạn có thể sử dụng cách dễ hiểu theo quan điểm của bạn.
a)
Do AB là đường trung trực của HD nên AD=AH(1)
Do AC là đường trung trực của HE nên AE=AH(2)
Từ (1);(2) suy ra AD=AE.
b)
Do AD=AH nên \(\Delta ADH\) cân tại A suy ra AB vừa là đường cao,vừa là đường phân giác \(\Rightarrow\widehat{DAB}=\widehat{BAH}\)
Do AE=AH nên \(\Delta\)AEH cân tại A suy ra AC là đường cao đồng thời là đường phân giác \(\Rightarrow\widehat{EAC}=\widehat{HAC}\)
\(\Rightarrow\widehat{DAE}=\widehat{DAH}+\widehat{EAH}=\left(\widehat{DAB}+\widehat{BAH}\right)+\left(\widehat{EAC}+\widehat{HAC}\right)=2\cdot\widehat{BAH}+2\cdot\widehat{HAC}=2\left(\widehat{BAH}+\widehat{HAC}\right)\)\(=2\cdot75^0=150^0\)
c)
Xét tam giác KHI có:KB là phân giác ngoài tại đỉnh K(vì có AB là phân giác);IC là phân giác ngoài tại đỉnh C(vì có AC là phân giác).
Chúng cắt nhau tại A nên suy ra HA là phân giác trong \(\widehat{KHI}\)
d)
Gọi Hx là tia đối của HI;giao điểm của BI và CK là O
Do \(AH\perp BC;\widehat{KHA}=\widehat{IHA}\Rightarrow\widehat{KHB}=\widehat{IHC}\)
Lại có:\(\widehat{xHB}=\widehat{IHC}\left(đ.đ\right)\Rightarrow\widehat{xHB}=\widehat{KHB}\)
=> HB là phân giác \(\widehat{KHx}\) hay HB là phân giác góc ngoài tại đỉnh H.
Xét \(\Delta KHI\) có tia phân giác HB và KB cắt nhau tại B nên IB là tia phân giác góc trong tại đỉnh I.
Do IB và IC là tia phân giác của 2 góc kề bù nên chúng vuông góc với nhau.\(\left(\widehat{KIH}\&\widehat{HIE}\right)\)
Xét tam giác ABC có AH và BI là 2 đường cao cắt nhau tại O nên CK là đường cao hay CK vuông góc với AB.
\(f\left(x\right)=-8x^4+6x^3-4x^2+2x-1\)
\(=-5x^4-\left(3x^4-6x^3+3x^2\right)-\left(x^2-2x+1\right)\)
\(=-5x^4-3\left(x^2-x\right)^2-\left(x-1\right)^2\le0\)
Mà ta dễ thấy dấu = không xảy ra nên f(x) không có nghiệm thuộc Z
Ta cần chứng minh bất đẳng thức sau: BC+AH>AB+AC=> BC+AH-AB>AC=> BC-AB>AC-AH (chuyển vế đổi dấu). (1)
=> Ta phải tạo ra một đoạn thẳng bằng AB trên cạnh BC và 1 đoạn bằng AH trên AC để chứng minh bất đẳng thức vùa biến đổi.
Hình phụ: Trên cạnh BC lấy điểm D sao cho AB=BD
Trên cạnh AC lấy điểm E sao cho AH=AE
Thay AB=AD và AH=AE vào (1), ta có: BC-BD>AC-AE=>DC>EC
Vậy ta sẽ chứng minh bất đẳng thức DC>EC thay vì chứng minh BC+AH>AB+AC
Xét tam giác AHD có ^AHD=90o (AH là đường cao)=> ^A1+^HDA=90o (2 góc nhọn trong tam giác vuông phụ nhau) (*)
Ta có: ^A2+^BAD=^BAC. Mà đề cho tam giác ABC vuông tại A=> ^BAC=90o=>^A2+^BAD=90o (**)
Từ (*) và (**)=> ^A1+^HDA=^A2+^BAD=90o (***)
Mà AB=BD theo cách vẽ=> Tam giác ABD cân tại B=> ^BAD=^BDA (2 góc ở đáy) hay ^BAD=^HDA (do H thuộc BD) (****)
Từ (***) và (****) => ^A1=^A2 (Trừ 2 vế cho ^HDA và ^BAD do 2 góc đó bằng nhau)
Xét tam giác AHD và tam giác AED có:
Cạnh AD chung
^A1=^A2 (cmt) => Tam giác AHD = Tam giác AED (c.g.c)
AH=AE theo cách vẽ
=> ^AHD =^AED. Mà ^AHD=90o=> ^AED=90o => ^DEC=90o (kề bù với ^AED)
=> DC là cạnh lớn nhất trong tam giác DEC=> \(DC>EC\)
Dựa vào hướng giải của bài toán, ta lại biến đổi DC>EC thành bất đẳng thức ban đầu:
DC>EC=> BC-BD > AC-AE (2)
Thay BD=AB, AE=AH vào (2), ta có: BC-AB>AC-AH. Chuyển vế đổi dấu lại ta được: BC+AH>AB+AC (đpcm)
Cách khác nhanh
Xét BC+AH>AB+AC
=>\(\left(BC+AH\right)^2>\left(AB+AC\right)^2\)
=>\(BC^2+2BC.AH+AH^{ }^2>AB^{ }^2+2AB.AC+AC^2\)
Mà \(AB^2+AC^2=BC^2\)(Định lí Pytago) ,\(2S_{ABC}=AH.BC=AB.AC\)
=>\(AH^2>0\)(Luôn đúng)
=> Điều phải chứng minh
Với mọi x thỏa mãn: f( a + b ) = f (ab)
=>f( 0 ) = f( -1/2 . 0 ) = f ( -1/2 + 0 ) = f( -1/2 ) = -1/2
=> f ( 2006 ) = f ( 2006 + 0 ) = f(2006 . 0 ) = f(0 ) = -1/2
1) Ta có: ^BAC+^BAD=^BAC+^CAE=^BAC=900 => ^DAC=^BAE
Xét \(\Delta\)DAC & \(\Delta\)BAE: AD=AB; ^DAC=^BAE; AC=AE => \(\Delta\)DAC=\(\Delta\)BAE (c.g.c)
=> CD=BE (2 cạnh tương ứng)
Gọi CD giao BE tại P, AB giao CD tại Q
Do \(\Delta\)DAC=\(\Delta\)BAE (cmt) => ^D1=^B1 (2 góc tương ứng)
Xét 2 tam giác: \(\Delta\)DAQ và \(\Delta\)BPQ: ^DQA=^BQP (đối đỉnh), ^D1=^B1
=> ^DAQ=^BPQ => ^BPQ=900 hay CD vuông góc với BE.
2) Trên tia đối của AM lấy điểm F sao cho AF=2AM.
Chứng minh được: \(\Delta\)ABM=\(\Delta\)FCM (c.g.c) => AB=FC. Mà AB=AD => FC=AD
=> ^ABM=^FCM (2 góc tương ứng). Mà 2 góc này so le trong => AB//FC
=> ^BAC+^ACF=1800. (1)
Lại có: ^BAC+^BAD+^CAE+^EAD=3600 => ^EAD+^BAC=3600-^BAD-^CAE=1800 (2)
Từ (1) và (2) => ^ACF=^EAD.
Xét \(\Delta\)ACF & \(\Delta\)EAD: AC=EA; ^ACF=^EAD; CF=AD => \(\Delta\)ACF=\(\Delta\)EAD (c.g.c)
=> AF=DE (2 cạnh tương ứng). Thấy AF=2AM => DE=2AM.
3) Gọi AM cắt DE tại K
Ta có: \(\Delta\)ACF=\(\Delta\)EAD (cmt) => ^A1=^E1.
Mà ^A1+^EAK=900 => ^E1+^EAK=900 => \(\Delta\)EKA vuông tại K hay AM vuông góc với DE.
4) Có: ^ACH+^HAC=900. Mà ^OAE+^HAC=900 => ^ACH=^OAE hay ^ACM=^OAE.
Xét \(\Delta\)AMC & \(\Delta\)EOA có: AC=AE, ^A1=^E1; ^ACM=^OAE => \(\Delta\)AMC=\(\Delta\)EOA (g.c.g)
=> AM=EO (2 cạnh tương ứng).
Lại có: DE=2AM (cmt) => DE=2EO (O\(\in\)DE) hay là trung điểm của DE (đpcm).
Để (ax3 + bx2 + cx + d) chia hết cho 5 thì
ax3 chia hết cho 5
và bx2 chia hết cho 5
và cx chia hết cho 5
và ax3 chia hết cho 5 (dùng ngoặc và)
=> a,b,c,d đề phải chia hết cho 5
theo tôi là vậy
ta có: x là số nguyên và x chia hết cho 5 ( trong toán học bạn phải viết kí hiệu của chia hết ra nhang)
=> ax^3 chia hết cho 5
bx^2 chia hết cho 5
cx chia hết cho 5
d chia hết cho 5
=>a,b,c,d đều chia hết cho 5
Sửa đề: \(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)
Chứng minh A chia hết cho 7: (mình dùng ký hiệu \(\exists\)làm ký hiệu đồng dư nhé)
\(\hept{\begin{cases}25\exists4\left(mod7\right)\\18\exists\left(mod7\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}25^n\exists4^n\left(mod7\right)\\18^n\exists4^n\left(mod7\right)\end{cases}}\)
\(\Rightarrow25^n-18^n⋮7\)
Ta lại có:
\(\hept{\begin{cases}5\exists5\left(mod7\right)\\12\exists5\left(mod7\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5^n\exists5^n\left(mod7\right)\\12^n\exists5^n\left(mod7\right)\end{cases}}\)
\(\Rightarrow5^n-12^n⋮7\)
Từ đây ta có \(A⋮7\)
Tương tự ta cũng chứng minh được \(A⋮13\)
Vì 7 và 13 nguyên tố cùng nhau nên
\(\Rightarrow A⋮7.13=91\)
a2 + b2 = c2
<=> (a2 + b2)n = c2n
<=> a2n + P + b2n = c2n
Mà P > 0 => a2n + b2n =< c2n
Dấu bằng xảy ra <=> n = 1 (làm đại ạ)