cho hình vuông ABCD, lấy m nằm giữa B vàC. kẻ AN vuông góc với MN (N và P thuộc đường thẳng CD). Gọi Q là giao điểm hai tia AM và DC .C/m tổng \(\frac{1}{AM^2}\)+\(\frac{1}{AQ^2}\)không đổi khi M di chuyển trên bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(a^2+b^2+c^2=1\)
\(\Rightarrow-1\le a,b,c\le1\)
Lấy 2 cái trên trừ nhau ta được
\(\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)=0\)
Ta có \(\left(a^2-a\right),\left(b^2-b\right),\left(c^2-c\right)\)cùng dấu nên dấu = xảy ra khi
\(\left(a,b,c\right)=\left(0,0,1;0,1,0;1,0,0\right)\)
\(\Rightarrow\)ĐPCM
Bài 1:
TH1: A, D nằm cùng phía với BC
Gọi I là trung điểm của BC. Khi đó theo tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông, ta có:
IB = ID = IC
Vậy nên \(\widehat{BDC}=\widehat{BDI}=\frac{\widehat{DIC}}{2}\) (Tính chất góc ngoài) (1)
Trên tia đối của tia IA lấy điểm A' sao cho I là trung điểm AA'.
Tam giác ABC vuông nên ta cũng có IB = IA = IC. Vậy thì IB = IA = IC = IA' hay tam giác ACA' vuông tại C.
Từ đó tương tự như bên trên ta có:
\(\widehat{DAI}=\frac{\widehat{DIA'}}{2};\widehat{CAI}=\frac{\widehat{CIA'}}{2}\)
\(\Rightarrow\widehat{DAC}=\widehat{DAI}-\widehat{CAI}=\frac{\widehat{DIA'}-\widehat{CIA'}}{2}=\frac{\widehat{DIC}}{2}\) (2)
Từ (1) và (2) suy ra \(\widehat{DAC}=\widehat{DBC}\)
Hoàn toàn tương tự ta có: \(\widehat{ADB}=\widehat{ACB}\)
TH2: A, D khác phía với BC
Tương tự như TH1:
Ta có: \(\widehat{DBC}=\frac{\widehat{DIC}}{2}\)
\(\widehat{DAC}=\widehat{DAA'}+\widehat{A'AC}=\frac{\widehat{DIA'}+\widehat{A'IC}}{2}=\frac{\widehat{DIC}}{2}\)
Vậy nên \(\widehat{DAC}=\widehat{DBC}\)
Tương tự \(\widehat{ADB}=\widehat{ACB}\)
Bài 1:
Do BE chia tam giác ABC thành hai tam giác có tỉ số đồng dạng là \(\sqrt{3}\) nên có thể xảy ra các trường hợp sau:
\(\left(1\right)\Delta AEC\sim\Delta EBC;\left(2\right)\Delta AEC\sim\Delta CBE;\left(3\right)\Delta AEC\sim\Delta CEB;\left(4\right)\Delta AEC\sim\Delta ECB\)
(Vì trong các trường hợp còn lại thì tỉ số đồng dạng là \(\frac{EC}{EC}=1\) )
Vì góc \(\widehat{AEC}>\widehat{BCE}\) nên không xảy ta trường hợp (1) và (2); Vì \(\widehat{BEC}>\widehat{EAC}\)nên không xảy ta trường hợp (4)
Do đó chỉ có thể xảy ra trường hợp (3) hay \(\Delta AEC\sim\Delta CEB\Rightarrow\widehat{AEC}=\widehat{BEC}\) và \(\frac{EC}{EB}=\frac{AE}{CE}=\sqrt{3}\)
\(\Rightarrow\widehat{AEC}=\widehat{CEB}=90^o\)
Vậy nên tam giác AEC vuông tại E và \(\frac{AE}{CE}=\sqrt{3}\Rightarrow\widehat{ACE}=60^o;\widehat{CAE}=30^o\)
Vậy tam giác ECB vuông tại E và \(\frac{EC}{EB}=\sqrt{3}\Rightarrow\widehat{CBE}=60^o;\widehat{ECB}=30^o\)
Do đó \(\widehat{CAB}=30^o;\widehat{CBA}=60^o;\widehat{ACB}=90^o.\)
a) Ta thấy: Tam giác ABC vuông tại A; DN vuông góc AC=> DN//AB => \(\frac{DF}{FN}=\frac{BM}{AM}\)(Hệ quả của ĐL Thales) (1)
Lại có: DM vuông góc AB; ^BAC=900 => DM//AC hay EM//AN => \(\frac{BM}{AM}=\frac{BE}{EN}\)(ĐL Thales) (2)
Từ (1) và (2) => \(\frac{DF}{FN}=\frac{BE}{EN}\)=> \(EF\)//\(BD\)(ĐL Thales đảo)
hay \(EF\)//\(BC\)(đpcm)
b) Dễdàng c/m được: Tứ giác AMDN là hình vuông => AM=MD=DN=AN
Gọi giao điểm của AE và FM là O
Ta có: \(\frac{DF}{DN}=\frac{BM}{AB}=\frac{BD}{BC}\)(Hệ quả ĐL Thales) (3)
Tương tự: \(\frac{EM}{MD}=\frac{AN}{AC}=\frac{BD}{BC}\)(4)
Từ (3) và (4) => \(\frac{DF}{DN}=\frac{EM}{MD}\)Mà DN=MD => DF=EM.
Xét \(\Delta\)AME và \(\Delta\)MDF:
AM=MD
^AME=^MDF => \(\Delta\)AME=\(\Delta\)MDF (c.g.c) => ^MAE=^DMF (2 góc tương ứng)
EM=DF (cmt)
Lại có: ^MAE+^MEA=900 => ^DMF+MEA=900 hay ^EMO+^MEO=900
Xét \(\Delta\)MEO: ^EMO+^MEO=900 =. \(\Delta\)MEO vuông tại O => FM vuông góc với AE
Tương tự ta c/m được EN vuông góc với AF
=> FM và EN là 2 đường cao của tam giác AEF. mà 2 đoạn này cắt nhau tại K
Vậy K là trực tâm tam giác AEF (đpcm).
c) Gọi BI giao AD tại H
K là trực tâm tam giác AEF (cmt) => AK vuông góc EF .Mà EF//BC (cmt) => AK vuông góc với BC
hay AK vuông góc với BD
Xét tam giác BAD:
AK vuông góc BD
DM vuông góc AB => I là trực tâm tam giác BAD
AK cắt DM tại I
=> BI vuông góc AD => IH vuông góc với AD.
Lại có ^HDI=^ADM=450 => Tam giác IHD vuông cân tại H
=> ^HID = 450 => ^BID=1350.
Vậy ^BID=1350.
Gọi \(ƯCLN\left(a,b\right)=k\)
\(\Rightarrow\hept{\begin{cases}a=a1.k\\b=b1.k\end{cases}}\) \(ƯCLN\left(a1;b1\right)=1\)
Vì \(ac=bd\Rightarrow a1.k.c=b1.k.d\Rightarrow a1.c=b1.d\left(1\right)\)\(\Rightarrow a1.c⋮b1\)mà \(ƯCLN\left(a1;b1\right)=1\)\(\Rightarrow c⋮b1\Rightarrow c=b1.m\left(2\right)\)
Thay (2) vào (1).Ta có:
\(b1.m.a1=b1.d\Rightarrow a1.m=d\)
Vậy \(a+b+c+d=b1.m+a1.m+k.a1+k.b1\)
\(=\left(a1+b1\right)\left(k+m\right)\)
Mà a1; b1; k; m là số nguyên dương nên \(\left(a1+b1\right)\left(k+m\right)\)là hợp số. Vậy a+b+c+d là hợp số.
Ta có:
\(a=\frac{bd}{c};b=\frac{ac}{d};c=\frac{bd}{a};d=\frac{ac}{b}\)
\(\Rightarrow\frac{bd}{c}+\frac{bd}{a}+\frac{ac}{b}+\frac{ac}{d}\)
\(=bd\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)
\(=ac\left(\frac{1}{a}+\frac{1}{c}\right)+ac\left(\frac{1}{b}+\frac{1}{d}\right)\)( Vì ac = bd )
\(=ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)
Khi đó: \(ac\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\)chia hết cho a,c,ac,1
=> a + b + c + d là hợp số
Vậy a + b + c + d là hợp số.
Đổi \(8h20'=8\frac{1}{3}h\)
Gọi khoảng cách từ nhà An tới nhà Bình là x (km, x > 0)
Khi Bình bắt đầu đi thì An đã đi được số ki-lô-mét là: \(\left(8\frac{1}{3}-8\right).4=\frac{4}{3}\left(km\right)\)
Tổng vận tốc của hai bạn là : 4 + 3 = 7 (km)
Thời gian để hai bạn gặp nhau kể từ khi Bình đi là: \(\frac{x-\frac{4}{3}}{7}=\frac{3x-4}{21}\left(h\right)\)
Khi đó quãng đường Bình đi được là: \(3.\frac{3x-4}{21}=\frac{3x-4}{7}\left(km\right)\)
Sau khi hai bạn gặp nhau thì lại quay về nhà Bình nên quãng đường Bình đi là: \(\frac{3x-4}{7}.2=\frac{6x-8}{7}\left(km\right)\)
An đi tới nhà Bình rồi quay lại nhà mình nên quãng đường An đi bằng 2 lần khoảng cách giữa nhà hai bạn và bằng 2x (km)
Theo bài ra ta có phương trình:
\(2x=4.\left(\frac{6x-8}{7}\right)\)
\(\Leftrightarrow14x=24x-32\Leftrightarrow x=3,2\left(km\right)\) (tmđk)
Vậy khoảng cách từ nhà An tới nhà Bình là 3,2 km.
Đổi \(\text{8h20}'\)= \(\frac{25}{3}\) h
Lúc 8h20', quãng đường An đi được là:
\(4.\left(\frac{25}{3}-8\right)=\frac{4}{3}\) (km)
Gọi thời gian An và Bình gặp nhau kể từ lúc Bình xuất phát là x (h)
=> Quãng đường An đi tới điểm gặp nhau kể từ lúc Bình xuất phát là: 4x (km)
Quãng đường Bình đi tới điểm gặp nhau là 3x (km)
=> Quãng đường từ nhà An đến nhà Bình là:
\(\frac{4}{3}+4x+3x=\frac{4}{3}+7x\)(km)
Theo đề, ta thấy quãng đường An đi bằng 2 lần quãng đường từ nhà An đến nhà Bình và quãng đường Bình đi bằng 2 lần quãng đường Bình đi tới điểm gặp nhau.
=> Ta có phương trình:
\(\frac{2\left(\frac{4}{3}+7x\right)}{2.3.x}=4\)
⇔\(\frac{\frac{4}{3}+7x}{6x}=4\)
⇔\(\frac{4}{3}+7x=12x\)
⇔\(12x-7x=\frac{4}{3}\)
⇔\(5x=\frac{4}{3}\)
⇔\(x=\frac{4}{15}\) (h)
=> Quãng đường từ nhà An đến nhà Bình dài:
\(\frac{4}{3}+7\text{×}\frac{4}{15}=3,2\) (km)
Vậy quãng đường từ nhà An đến nhà Bình dài \(\text{3,2}\) km.
Gọi O là giao điểm của AC và BD. Theo tính chất hình bình hành thì O là trung điểm AC và BD.
Gọi H, I, J, L lần lượt là chân các đường cao hạ từ D, O, C, B xuống đường thẳng xy.
Ta thấy ngay DH // OI // CJ // KB.
Xét tam giác ACJ có O là trung điểm AC, OI // CJ nên OI là đường trung bình tam giác hay CJ = 2OI. (1)
Xét hình thang vuông HDBK có O là trung điểm BD, OI // DH // BK nên OI là đường trung bình hình thang.
Vậy thì \(DH+BK=2OI\) (2)
Từ (1) và (2) suy ra CJ = DH + BK.
Suy ra \(\frac{1}{2}CJ.AE=\frac{1}{2}HD.AE+\frac{1}{2}BK.AE\) hay \(S_{ACE}=S_{ADE}+S_{ABE}\)
1
Ta có do \(K\in CD;CD//AB\Rightarrow\widehat{K1}=\widehat{A2}\)
Mà \(\widehat{A2}=\widehat{A1}\)(AK LÀ PHÂN GIÁC)
\(\Rightarrow\widehat{K1}=\widehat{A1}\Rightarrow\Delta ADK\)cân tại D => AD=DK
Tương tự ta cm được BC=CK
=> AD+BC=DK+CK
Mà K nằm giữa C và D nên AD+BC=DK+CK=DC(đpcm)
bài 1 sai đề rồi bạn. Nếu BEMD là ht cân thật thì \(\widehat{ABC}=\widehat{MDB}\)mà \(\widehat{MDB}=\widehat{ACB}\)(đồng vị) => \(\widehat{ABC}=\widehat{ACB}\)=> tam giác ABC cân( trái với đề bài)
Ta có:
\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)(1)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\left(2\right)\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{16}{a+b+2c}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\le4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=16\)
\(\Leftrightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
Bạn vẽ hình đi mình làm cho
Bạn ghi lại đề đi, mình thấy sai sai