Cho \(\Delta ABC\)với \(\widehat{A}=105^o,\widehat{B}=45^o\). Đường trung tuyến BM cắt phân giác góc C tại I. Tính \(\widehat{BAI}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.
Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.
Tam giác MNP vuông tại M có góc N là 60 độ.
Trên tia đối tia MN lấy điểm Q sao cho MQ=MN
Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.
Tương tự với bài toán của chúng ta :
\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)
\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)
\(\Rightarrow HB=\frac{1}{4}BC\)
Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)
nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{DAH}=60^o\)
\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )
Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH
\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)
\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều
\(\Rightarrow KB=AB\)
Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.
Vậy ....
Với mọi đa thức f(x),khi khai triển luôn có dạng : an.xn + an - 1.xn - 1 + an - 2.xn - 2 + ... + a2.x2 + a1.x + a0
\(\Rightarrow f\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_2+a_1+a_0\)là tổng các hệ số của f(x)
Đặt đa thức đã cho là f(x) thì tổng các hệ số của f(x) khi bỏ dấu ngoặc trong biểu thức (khai triển) là :
f(1) = (3 - 4 + 1)2006.(3 + 4 + 1)2007 = 02006.72007 = 0
a) Ta có MD = MA; BD BA nên MB là trung trức của AD.
Vậy nên I thuộc trung trực AD hay ID = IA.
Tương tự IE = IA.
Suy ra ID = IE hay tam giác IDE là tam giác cân tại I.
Lại có IO là trung tuyến nên OI là đường cao hay \(IO\perp DE\)
b) Ta có \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=180^o-80^o=100^o\)
\(\Rightarrow\widehat{ADB}+\widehat{AFC}=\frac{\widehat{ABC}}{2}+\frac{\widehat{ACB}}{2}=\frac{100^o}{2}=50^o\)
\(\Rightarrow\widehat{DAB}+\widehat{EAC}=50^o\)
\(\Rightarrow\widehat{DAE}=80^o+50^o=130^o\)
Ta thấy \(\widehat{IDA}=\widehat{IAD};\widehat{IEA}=\widehat{IAE}\Rightarrow\widehat{IDA}+\widehat{IAE}=\widehat{IAD}+\widehat{IEA}=\widehat{DAE}=130^o\)
\(\Rightarrow\widehat{DIE}=360^o-130^o-130^o=100^o\)
Ta thấy ngay \(\widehat{MIN}=\widehat{MIA}+\widehat{NIA}=\frac{\widehat{DIA}}{2}+\frac{\widehat{EIA}}{2}=\frac{100^o}{2}=50^o\)
khi đó tổng này sẽ phụ thuộc vào hiệu 2 ẩn nào đó, tuỳ theo mỗi trường hợp
Ta có: \(AC-AB>CK-BH\) (*)
\(\Leftrightarrow AC+BH>AB+CK\)
\(\Leftrightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)
\(\Leftrightarrow AC^2+BH^2+2.AC.BH>AB^2+CK^2+2.AB.CK\)
\(\Leftrightarrow AC^2+BH^2+4S_{ABC}>AB^2+CK^2+4S_{ABC}\)
\(\Leftrightarrow AC^2+BH^2>AB^2+CK^2\)
\(\Leftrightarrow AK>AH\) (**)
Xét tam giác ABC có \(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)
Trên AC lấy điểm B' sao cho AB' = AB \(\Rightarrow AB'< AC\Rightarrow\) B' nằm giữa A và C. (1)
Kẻ B'K' vuông góc AB tại K'.Suy ra B'K' // KC (2)
Từ (1) và (2) suy ra K' nằm giữa A và K hay AK' < AK
Ta thấy ngay \(\Delta ABH=\Delta ACK'\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK'\Rightarrow AK>AH\)
Vậy (**) đúng hay (*) đúng.
Ta có tam giác AKC vuông tại K
=> AC là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)
=>AC > CK
Ta có tam giác ABH vuông tại H
=> AB là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)
=> AB > BH
Có: AC>CK;
AB>BH (cmt)
=> AC-AB > CK-BH
Ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3};\frac{a_2}{a_3}=\frac{a_3}{a_4};...;\frac{a_{2015}}{a_{2016}}=\frac{a_{2016}}{a_{2017}}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2016}}{a_{2017}}=k\)
\(\Rightarrow\frac{a_1^{2016}}{a_2^{2016}}=\frac{a_2^{2016}}{a_3^{2016}}=...=\frac{a_{2016}^{2016}}{a_{2017}^{2016}}=\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=k^{2016}\left(1\right)\)
Ta lại có:
\(k^{2016}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2016}}{a_{2017}}=\frac{a_1}{a_{2017}}\left(2\right)\)
Từ (1) và (2) \(\frac{a_1^{2016}+a_2^{2016}+...+a_{2016}^{2016}}{a_2^{2016}+a_3^{2016}+...+a_{2017}^{2016}}=\frac{a_1}{a_{2017}}\)
Ta kéo dài tia MA , lấy điểm N thuộc tia MA sao cho IN = IK
Dễ thấy OAMB là hình vuông vì có góc O = góc B = góc A = 900 và OM là tia phân giác góc O . => OA = OB
Ta có : IN = IK (dựng hình) ; \(\widehat{NIO}=\widehat{OIK}\) (gt) ; IO là cạnh chung của hai tam giác NIO và OIK
=> \(\Delta NIO=\Delta IOK\left(c.g.c\right)\)=> \(\widehat{NOI}=\widehat{IOK}\) ; ON = OK
Xét hai tam giác vuông : \(\Delta AON\) và \(\Delta BOK\)có OA = OB (cmt) ; ON = OK (cmt)
=> \(\Delta AON=\Delta BOK\left(ch.cgv\right)\) => \(\widehat{AON}=\widehat{BOK}\)
Mà \(\widehat{BOK}+\widehat{AOK}=90^o\) \(\Rightarrow\widehat{AON}+\widehat{AOK}=90^o\)
hay \(\widehat{NOK}=2\widehat{IOK}=90^o\Rightarrow\widehat{IOK}=\frac{90^o}{2}=45^o\)
Ta đặt số cây của các tổ là A
ta có:
Số cây tổ 1 là 20 + ( A - 20 ) 0,04
Số cây tổ 2 là 21 + ( A - 21 - 20 - ( A - 20 ) 0,04 ) 0,04
Ta có số cây mỗi tổ bằng nhau
=> 20 +( A - 20 ) 0,04 = 21 + ( A - 21 - 20 - ( A - 20 ) 0,04 ) 0,04
<=> 20+ 0,04A - 0,8 = 21 + ( 0,96A - 40,2 ) 0,04
<=> 0.04A + 19,2 = 21 + 0,0384A - 1,608
<=> 1/625A = 0,192
<=> A = 120
Ta sẽ có số cây tổ 1 là 20 + ( 120 - 20 ) 0,04 = 24 cây
vì số cây mỗi tổ bằng nhau nên số cây mỗi tổ là 120 : 24 = 5 (tổ)
Vậy số cây mỗi tổ là 24 cây
Lớp 7a có 5 tổ
Ta có:
\(y^3=\left(x-2\right)^4-x^4\)
\(\Leftrightarrow y^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)
\(\Rightarrow\)y là số chẵn
Đặt \(y=-2k\left(k\in Z\right)\)
\(\Rightarrow-8k^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)
\(\Leftrightarrow k^3=\left(x-1\right)\left(x^2-2x+2\right)\)
Đễ dàng chứng minh được \(\left(x-1\right);\left(x^2-2x+2\right)\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}x-1=m^3\\x^2-2x+2=n^3\end{cases}}\)
\(\Rightarrow n^3=m^6+1\)
Ta lại có: \(m^6< m^6+1\le\left(m^2+1\right)^3\)
\(\Rightarrow m^6+1=\left(m^2+1\right)^3\)
\(\Leftrightarrow m^2\left(m^2+1\right)=0\)
\(\Leftrightarrow m=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
nối M với h, ta có:
MH = AC/2 = MC ( trung tuyến = 1/2 cạnh huyền của tam giác vuông AHC)
=> MHC^ = MCH^ = 2.KCH^ ( vì CK là phân giác của ACB^)
gt: KB = KC => KCH^ = KBH^
=> MHC^ = 2.KBH^ = KBH^ + KBH^ (1)
mắt khác:
MHC^ = KBH^ + KMH^ (2) ( góc ngoài và trong của tam giác BMH)
(1) và (2) => KBH^ = KMH^ => BHM cân tại H => HB = HM (1)
tổng góc trong của tam giác BMH là:
KBH^ + BHA^ + AHM^ + KMH^ = 180*
=> 2.KBH^ + 90* + AHM^ = 180*
=> 2.KBH^ + AHM^ = 90* (2)
tam giác AHC vuông => MAH^ + MCH^ = 90*
=> MAH^ + 2.KCH^ = 90*
=> MAH^ + 2.KBH^ = 90* (3) ( vì KCH^ = KBH^)
(2) và (3) => AHM^ = MAH^ => HA = HM
mặt khác: HM = AC/2 = AM
=> HA = HM = AM => AHM là tam giác đều => HA = HM (4)
(1) và (4) => HA = HB
=> AHM là tam giác đều => MAH^ = 60* => ACB^ = 30*
=> ABC^ = 180* - BAC^ - ACB^ = 180* - 105* - 30* = 45*
(hoặc ABC^ = ABH^ = 45* => ACB^ = 30*)