Cho f(x) = \(\frac{1}{2x-2x^2-1}\)
Tính giá trị biểu thức : \(f\left(\frac{1}{2016}\right)+f\left(\frac{2}{2016}\right)+f\left(\frac{3}{2016}\right)+...+f\left(\frac{2015}{2016}\right)+f\left(\frac{2016}{2016}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy A' đối xứng với A qua Ox, B' đối xứng với B qua Oy
Nối A'B' cắt Ox và Oy lần lượt tại M' và N'
Vì A' đối xứng với A qua Ox nên Ox là đường trung trực của AA', do đó MA = MA'
Tương tự NB = NB'
Ta có: AM + MN + BN = A'M + MN + B'N = A'MNB'
Ta thấy đường gấp khúc \(A'MNB'\ge A'B'\)(vì A và B nằm ở miền trong của \(\widehat{xOy}\)) Dấu bằng xảy ra khi M trùng M' và N trùng N'
Vậy Min (AM + MN + BN) = A'B' khi M trùng M' và N trùng N' là giao điểm của A'B' với các tia Ox và Oy
Không mất tính tổng quát, giả sử x > y (do tổng x + y = 2009 là một số lẻ)\(\Rightarrow\)x \(\ge\)y+1 \(\Rightarrow\)x - y - 1 \(\ge\)0.
Từ đó, ta có: (x +1)(y -1) = xy - (x - y -1) \(\le\)xy.
Đến đây ta hiểu rằng, khi x và y càng xa nhau thì tích xy càng bé.
như vậy, GTLN của xy = 1005.1004; GTNN của xy = 2008.1
https://lazi.vn/edu/exercise/cho-hinh-thang-abcd-o-la-giao-diem-2-duong-cheo-day-lon-cd-duong-thang-qua-a-song-song-voi-bc-cat-bd-o-e
bn cs thể tham khảo ở đây nhé
..xoxo,,,,,,
Đặt các điểm như hình vẽ sau:
Xét tứ giác ABCD: AB//CD => Tứ giác ABCD là hình thang
Ta thấy: E;I;G thuộc đoạn AD: AE=EG=GI=ID
=> G là trung điểm AD và EI; E là trung điểm AG; I là trung điểm DG
Tương tự ta có: H là trung điểm BC và FK; F là trung điểm BH; K là trung điểm HC
Hình thang ABCD (AB//CD) có: G và H lần lượt là trung điểm của AD và BC
=> GH là đường trung bình hình thang ABCD => GH // AB // CD
Từ đó có: 2 tứ giác ABHG và GHCD là hình thang
Dễ thấy: EF là đường trung bình hình thang ABHG => EF = (AB+HG)/2
\(\Rightarrow x+3=\frac{4x+1}{2}\Rightarrow x=\frac{5}{2}\)
Đồng thời EF // GH. Tương tự: IK // GH => EF // IK => Tứ giác EFKI là hình thang
Hình thang EFKI có: G;H là trung điểm của EI và FK (cmt) => GH là đường trung bình hình thang EFKI
=> GH = (EF+IK)/2 \(\Rightarrow3x+1=\frac{x+y+3}{2}\Rightarrow y=\frac{23}{2}\)(Do x=5/2)
Lại có: IK là đường trung bình hình thang GHCD => IK = (GH+CD)/2
\(\Rightarrow y=\frac{3x+z+1}{2}\Rightarrow z=\frac{29}{2}\)(Do x=5/2 và y=23/2)
Vậy \(x=\frac{5}{2};y=\frac{23}{2};z=\frac{29}{2}.\)
Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zy\right)=x^2+y^2+z^2\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)
\(\Rightarrow\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=0\)( Chia 2 vế cho xyz )
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
Ta lại có : \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^3-\left(\frac{3}{x^2y}+\frac{3}{xy^2}\right)+\frac{1}{z^3}\)
\(=\left(-\frac{1}{z}\right)^3-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}\)
\(=-\frac{3}{xy}\cdot-\frac{1}{z}\)\(=\frac{3}{xyz}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm )
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Ta lại co:
\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-\frac{3}{xyz}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Chứng minh rằng : với mọi số tự nhiên n>1 thì \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\sqrt{n}\)\(\sqrt{n}\)
Goi I là trung điểm của CD
=> I D = AD / 2
=> 2ID = AD
=> 2ID = 2 AB = 2 AD
=> ID = AB = AD
Xét tứ giác ABID có ID = AB = AD
=> ABID là hình thoi
Xét hình thoi ABID có
góc A = góc D = 90 độ
=> ABID là hình vuông
=> AD = B I
=> 2BI = 2AD
=> 2BI = DC
=> BI = DC / 2
=> BI = IC
Vì ABID là hình vuông => BID = 90 độ
=> 180 - BID = 90 độ
=> BIC = 90 độ => tam giác BIC vuông tại I
Xét tam giác vuông BIC co BI = I C
=> tam giác BIC vuông cân tại I
=> I B C = 45 độ
Vì ABI = 90 độ
=> ABI + IBC = 135
=> ABC = 135 độ
ĐẶT LẠI ĐIỂM MỘT CHÚT NHÉ
TA CÓ: DE SONG SONG VỚI MQ VÀ DE = 2MQ , BC SONG SONG VỚI MQ VÀ BC = 2 MQ
=> DE SONG SONG VÀ BẰNG BC
=> BE CẮT CD TẠI TRUNG ĐIỂM CỦA MỖI ĐOẠN
CM TƯƠNG TỰ, AF CÁT CD TẠI TRUNG ĐIỂM CỦA MỖI ĐOẠN
=> AF,BE,CD ĐỒNG QUY
Ta có:
f(x)=\(\frac{x^2}{2x-2x^2-1}=\frac{x^2}{-\left(x-1\right)^2-x^2}\)
tiếp tục giờ ta tìm f(1-x) mục đích của việc này là để ghép cặp vì bạn để ý ghép sao cho tổng của tử bằng mẫu. Vây f(1-x)=\(\frac{\left(x-1\right)^2}{-x^2-\left(x-1\right)^2}\)
từ đây suy ra f(x)+f(1-x)= -1( bạn cũng xem lại đề cho mình nha tử là x^2 chứ không phải là 1 )
Giờ ta ghép cặp như sau: ta loại trừ f(\(\frac{1008}{2016}\)) và f(1) ra 1 ở đây mình rút gọn 2016/2016. 2 số này sẽ dùng để thay vào tính: Còn các số còn lại sẽ được ghép làm 1007 cặp mà mỗi cặp bằng -1 do cmt. vậy mình gọi cái cần tính là A thì
=> A=-1.1007-1-0,5=-1008,5
Bạn xem lại hộ xem thử đề đúng không nhé b. Sao không thấy có cơ sở để tính tổng này??