(1 điểm) a. Phát biểu quy tắc nắm tay phải.
(1 điểm) b. Treo một nam châm gần ống dây như hình dưới đây. Hiện tượng gì sẽ xảy ra với kim nam châm khi ta đóng khóa K?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nhân chéo rồi rút gọn thì được:
\(x^4-3x^3+3x+1=0\\ \Leftrightarrow(x^2-2x-1)(x^2-x-1)=0\)
Bạn tự giải tiếp nhé.
Ta có thể dùng cosy hoặc đặt a,b lần lượt là hai số hạng vế trái của phương, đưa phương trình về hệ phương trình không triệt để. Từ đó giải phương.
Đầu kiện: \(x\ge0\)
Ta có:
\(4\sqrt{x}=2\sqrt{4x}\le4+x\\ \Rightarrow x^2+4-4\sqrt{x}\ge x^2-x\\ \Rightarrow\sqrt{x^2+4-4\sqrt{x}}\ge\sqrt{x^2-x}\)
\(6\sqrt{x}=2\sqrt{9x}\le9+x\\ \Rightarrow\sqrt{x^2+4-6\sqrt{x}}\ge\sqrt{x^2-x-5}\)
Suy ra \(1\ge\sqrt{x^2-x}+\sqrt{x^2-x-5}\)
Đặt \(\sqrt{x^2-x}=a;0\le a\le1\\ \sqrt{x^2-x-5}=b;0\le b\le1.\\ \Rightarrow a^2-b^2=\left(x^2-x\right)-\left(x^2-x-5\right)=5.Vôlí\)
Vậy phương trình đã cho vô nghiệm.
Với `x \ne 0,x \ne 1` có:
`A=([x\sqrt{x}]/[\sqrt{x}-1]-[x^2]/[x\sqrt{x}])(1/\sqrt{x}-1)^2`
`A=([x\sqrt{x}]/[\sqrt{x}-1]-x/\sqrt{x})([1-\sqrt{x}]/\sqrt{x})^2`
`A=[x^2-x(\sqrt{x}-1)]/[\sqrt{x}(\sqrt{x}-1)].[(\sqrt{x}-1)^2]/x`
`A=[x(x-\sqrt{x}-1)]/\sqrt{x}.[\sqrt{x}-1]/x`
`A=[x-\sqrt{x}-1]/[\sqrt{x}-1]`
ĐKXĐ :
\(\left\{{}\begin{matrix}\sqrt{a}+2\ne0\\\sqrt{a}-2\ne0\\\sqrt{a}\ne0\\\sqrt{a}x\text{đ}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{a}\ne2\\a\ne0\\a\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne4\\a>0\end{matrix}\right.\)
Rút gọn :
\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right).\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\)
\(=\dfrac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}.\dfrac{a-4}{\sqrt{a}}\)
\(=\dfrac{\left(\sqrt{a}-2+\sqrt{a}+2\right)\left(\sqrt{a}-2-\sqrt{a}-2\right)}{\left(\sqrt{a}\right)^2-2^2}.\dfrac{a-4}{\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}.\left(-4\right)}{\sqrt{a}}\)
\(=2.\left(-4\right)=-8\)
ta có \(\sqrt{\left(a+c\right)\left(a+b\right)}\ge a+\sqrt{bc}\left(1\right)\)
thật vậy \(\left(1\right)\Leftrightarrow\left(a+c\right)\left(a+b\right)\ge a^2+2a\sqrt{bc}+bc\)
\(\Leftrightarrow ab+ac\ge2a\sqrt{bc}\Leftrightarrow b+c\ge2\sqrt{bc}\)(đúng theo BĐT cosi)
cminh tương tự \(\Rightarrow\sqrt{\left(b+c\right)\left(b+a\right)}\ge b+\sqrt{ac};\sqrt{\left(c+a\right)\left(c+b\right)}\ge c+\sqrt{ab}\)
\(\Rightarrow\dfrac{a}{\sqrt{\left(a+c\right)\left(a+b\right)}}\le\dfrac{a}{a+\sqrt{bc}}=\dfrac{1}{1+\dfrac{\sqrt{bc}}{a}}\)
\(tt\Rightarrow P\le\dfrac{1}{1+\dfrac{\sqrt{bc}}{a}}+\dfrac{1}{1+\dfrac{\sqrt{ac}}{b}}+\dfrac{1}{1+\dfrac{\sqrt{ab}}{c}}\)
\(đặt\left(\dfrac{\sqrt{bc}}{a};\dfrac{\sqrt{ac}}{b};\dfrac{\sqrt{ab}}{c}\right)=\left(x;y;z\right)\Rightarrow xyz=1\)
\(\Rightarrow P\le\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\)
ta đi chứng minh \(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\le\dfrac{3}{2}\)
\(\Leftrightarrow2\left(y+1\right)\left(z+1\right)+2\left(x+1\right)\left(z+1\right)+2\left(x+1\right)\left(y+1\right)\le3\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow2xy+2xz+2yz+4x+4y+4z+6\le3xyz+3+3xy+3xz+3yz+3x+3y+3z\)
ủa đến đây theo cách làm bth đúng rồi mà sao không ra nhỉ bạn xem lại hộ mình giống bài n ày mình từng làm r
https://hoc24.vn/vip/289470733648/page-12
14 balls are not blue. => yellow + red + pink = 14
16 balls are not yellow. => blue + red + pink = 16
24 balls are not red. => blue + yellow + pink = 24
12 balls are not pink. => blue + yellow + red = 12
====> 3 yellow + 3 red + 3 blue + 3 pink = 14+16+24+12
3(yellow + red + blue + pink) = 66
yellow + red + blue + pink = 66:3 =22
a. Quy tắc bàn tay trái (còn gọi là quy tắc Fleming) là quy tắc định hướng của lực. Do một từ trường tác động lên một đoạn mạch có dòng điện chạy qua và đặt trong từ trường. Đặt bàn tay trái sao cho các đường cảm ứng từ hướng vào lòng bàn tay. Chiều từ cổ tay đến ngón tay giữa hướng theo chiều dòng điện. Thì ngón tay cái choãi ra 90° chỉ chiều của lực điện từ.
b. Kim nam châm về phía của cuộn dây,khi đóng khóa K dòng điện sẽ chạy rồi áp dụng quy tắc nắm bàn tay phải thì một bên là cực nam, một bên là cực bắc nên chúng sẽ hút nhau.
a) Nắm bàn tay phải, rồi đặt sao cho bốn ngón tay hướng theo chiều dòng điện chạy qua các vòng dây thì ngón tay cái choãi ra chỉ chiều của đường sức từ trong lòng ống dây.
b) Kim nam châm bị đẩy ra, vì khi đóng khóa K thì dòng điện sẽ chạy rồi áp dụng quy tắc nắm tay phải thì 2 bên là ống dây cực bắc mà bên kim nam châm cũng cực bắc suy ra 2 bên đẩy nhau