\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\sqrt{y}=-1\\\dfrac{1}{x+1}+2y=4\end{matrix}\right.\)
giải hệ pt trên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(5^x+12^x=y^2\)
Ta có: \(y^2\equiv5^x+12^x\left(mod3\right)\equiv5^x\left(mod3\right)\equiv\left(-1\right)^x\left(mod3\right)\)
mà ta có số chính phương khi chia cho \(3\)chỉ dư \(0\)hoặc \(1\).
Suy ra \(x\)là số chẵn.
Đặt \(x=2k,k\inℕ\).
Ta có: \(5^{2k}+12^{2k}=y^2\)
\(\Leftrightarrow y^2-12^{2k}=5^{2k}\)
\(\Leftrightarrow\left(y-12^k\right)\left(y+12^k\right)=5^{2k}\)
Suy ra \(\hept{\begin{cases}y-12^k=5^m\\y+12^k=5^n\end{cases}}\)với \(m+n=2k,m< n\).
suy ra \(2.12^k=5^n-5^m=5^m\left(5^{n-m}-1\right)\)
Ta có: \(2.12^k⋮̸5\Rightarrow5^m\left(5^{n-m}-1\right)⋮̸5\Rightarrow m=0\)
\(2.12^k=5^n-1=5^{2k}-1=25^k-1\)
Với \(k=0\): \(2.12^k=2,25^k-1=-1\)không thỏa mãn.
Với \(k=1\): \(2.12^k=2.12=24,25^k-1=25-1=24\)thỏa mãn.
suy ra \(x=2\).
Với \(k\ge2\): \(25^k-1>24^k-1>24^k=\left(2.12\right)^k>2.12^k\)
Vậy \(2\)là giá trị duy nhất của \(x\)thỏa mãn ycbt.
- \(m=0\)dễ thấy không thỏa mãn.
- \(m\ne0\):
\(\Delta'=\left(m-1\right)^2-3\left(m-2\right).m=-2m^2+4m+1\)
Để phương trình đã cho có hai nghiệm \(x_1,x_2\)thì \(\Delta'\ge0\Rightarrow-2m^2+4m+1\ge0\).
Khi phương trình có hai nghiệm \(x_1,x_2\), theo Viete ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1x_2=\frac{3\left(m-2\right)}{m}\end{cases}}\)
Ta có: \(x_1+2x_2=1\)
\(\Rightarrow\left(x_1+2x_2-1\right)\left(x_2+2x_1-1\right)=0\)
\(\Leftrightarrow5x_1x_2+2\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)+1=0\)
\(\Leftrightarrow2\left(x_1+x_2\right)^2-3\left(x_1+x_2\right)+x_1x_2+1=0\)
\(\Rightarrow2\left[\frac{2\left(m-1\right)}{m}\right]^2-\frac{6\left(m-1\right)}{m}+\frac{3\left(m-2\right)}{m}+1=0\)
\(\Leftrightarrow8\left(m-1\right)^2-6m\left(m-1\right)+3m\left(m-2\right)+m^2=0\)
\(\Leftrightarrow6m^2-16m+8=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\)
Thử lại đều thỏa mãn.
ta có \(\frac{a}{1+b-a}+a\left(1+b-a\right)\ge2a\)hay \(\frac{a}{1+b-a}\ge a\left(1+a-b\right)=a\left(2a+c\right)\)
tương tự ta sẽ có :
\(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge2a^2+2b^2+2c^2+ab+ac+bc\)
\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\ge\frac{1}{2}\left(a+b+c\right)^2+\frac{1}{2}\left(a+b+c\right)^2\)
\(\ge\left(a+b+c\right)^2=1\)
vậy ta có điều phải chứng minh
dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
vì bạn muốn làm bằng BDT Bunhia nên mình làm cách đó nhé :
ta có : \(\left[a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)\right]\left(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\right)\)
\(\ge\left(a+b+c\right)^2=1\) ( áp dụng Bunhia )
nên ta có : \(VT\ge\frac{1}{a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)}=\frac{1}{a\left(2b+c\right)+b\left(2c+a\right)+c\left(2a+c\right)}\)
\(\ge\frac{1}{3\left(ab+bc+ca\right)}\) mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
nên ta có : \(VT\ge\frac{1}{3\times\frac{1}{3}}=1=VP\) vậy ta có đpcm
Điều kiện : \(-4< x< 1\)
\(\sqrt{1-x}=3-\sqrt{4+x}\)
\(1-x=9+4+x-6\sqrt{4+x}\)
\(0=12+2x-6\sqrt{4+x}\)
\(6+x=3\sqrt{4+x}\)
\(36+12x+x^2=9\left(4+x\right)\)
\(x^2+3x=0\)
\(x\left(x+3\right)=0\)
\(\hept{\begin{cases}x=0\left(tm\right)\\x=-3\left(tm\right)\end{cases}}\)
Vậy \(S=\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
Mình biết 1 phương pháp không cần biết độ dài các cạnh của đa giác nhưng vẫn tính được diện tích đa giác như sau:
Giả sử đó là tứ giác (tam giác và các đa giác có số cạnh \(n\ge5\)cũng làm tương tự)
Gọi 4 đỉnh của tứ giác là A, B, C, D
Vẽ hệ trục tọa độ Oxy bất kì (tốt nhất lá gốc tọa độ nên nằm trong đa giác)
Xác định tọa độ của A, B, C, D, lập bảng tọa độ của các điểm và liệt kê các điểm theo chiều ngược chiều kim đồng hồ và viết lại điểm đầu tiên 1 lần nữa, giả sử ta xác định được như sau:
Điểm | x | y |
A | \(x_A\) | \(y_A\) |
D | \(x_D\) | \(y_D\) |
C | \(x_C\) | \(y_C\) |
B | \(x_B\) | \(y_B\) |
A | \(x_A\) | \(y_A\) |
Tính giá trị của \(x_Ay_D+x_Dy_C+x_Cy_B+x_By_A-x_Dy_A-x_Cy_D-x_By_C-x_Ay_B\)rồi chia KQ cho 2, ta được diện tích đa giác.
Vừa nói xong, lớp 7 đã khó lại còn lớp 8, lớp 8 đã khó nay lại là lớp 9. Muốn thiếp lâm sàn ngay tại chỗ quá đi mất thôi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Phương trình 1 tương đương
[2(x+1) - 2]/(x+1) + \(\sqrt{y}\)= -1
=> 2 - 2/(x+1)+ \(\sqrt{y}\)= -1
Ta đặt 1/(x+1) = a; + \(\sqrt{y}\)= b (điều kiện b >=0) thê vào trên ta được:
2-2a+b = -1 => b = -1-2+2a = 2a-3 (*)
Thế vào phương trình 2 ta được:
a + 2\(b^2\) =4 (**)
Thế (*) vào (**) ta có:
a + 2(2a-3)^2 = 4
=>2(4a^2 - 12a+9) + a = 4
=>8a^2 - 24a +18 +a = 4
=>8a^2 - 23a+14 =0
detal = 23x23 - 4.8.14 =81
=> a= (23-9)/16 = 7/8 hoặc a = (23+9)/16 = 2
Với a = 7/8 => b = 2a-3 = 2.7/8-3 < 0 (loại)
Với a = 2 => 1/(x+1) =2 => x =1
b = 2a-3 = 2.2 -3 =1 => y = 1
Kết luận X = 1, Y = 1
Mọi thắc mắc nâng cao hoặc muốn kèm thêm toán thì có thể liên hệ thêm qua inbox tin nhắn
ehee