Giải hệ phương trình \(\left\{{}\begin{matrix}2x+\dfrac{3}{y-1}=5\\4x-\dfrac{1}{y-1}=3\end{matrix}\right.\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Khi \(x=4\):
\(A=\dfrac{\sqrt{4}+1}{\sqrt{4}+2}=\dfrac{3}{4}\).
2) \(B=\dfrac{3}{\sqrt{x}-1}-\dfrac{\sqrt{x}+5}{x-1}=\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+5}{x-1}\)
\(=\dfrac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{2}{\sqrt{x}+1}\)
3) \(P=2AB+\sqrt{x}=2.\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\dfrac{2}{\sqrt{x}+1}+\sqrt{x}=\dfrac{4}{\sqrt{x}+2}+\sqrt{x}\)
\(=\dfrac{4}{\sqrt{x}+2}+\sqrt{x}+2-2\ge2\sqrt{\dfrac{4}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)}-2\)
\(=4-2=2\)
Dấu = xảy ra khi \(\dfrac{4}{\sqrt{x}+2}=\sqrt{x}+2\Leftrightarrow x=0\) (thỏa mãn).
vì A là giao điểm của d và Oy nên A(0;y)
vì A \(\in\) d nên tọa độ A thỏa mãn :
y = m . 0 + 4 = 4
tọa độ của A là : A(0;4)
vì B cắt trục Ox tại B nên B(x;0)
vì B \(\in\) d nên tọa độ B thỏa mãn
0 = m.x + 4
x = \(\dfrac{-4}{m}\)
Để tam giác OAB cân tại O thì |\(\dfrac{-4}{m}\)| = 4
|m| = 1
m = 1 và m= -1
kết luận : A(0;4) và m = 1 và m = -1
Gọi vận tốc đi bộ của An là x
Vận tốc đi xe đạp của An là x+9
Thời gian đi buổi sáng là \(\dfrac{3}{x}\)
Thời gian đi buổi chiều là \(\dfrac{3}{x+9}\)
45 phút = 3/4 giờ
Ta có PT
\(\dfrac{3}{x}-\dfrac{3}{x+9}=\dfrac{3}{4}\Leftrightarrow4\left(x+9\right)-4x=x\left(x+9\right)\)
\(\Leftrightarrow x^2+9x-36=0\)
Giải PT ta có
\(x_1=-12\) (loại)
\(x_2=3\)
Vậy vận tốc đi bộ của An là 3km/h
gọi vận tốc đi bộ của An là x(km/h ; x>0)
vì vận tốc đi xe đạp lớn hơn vận tốc đi bộ là 9km/h
=> vận tốc đi xe đạp là x+9(km/h)
thời gian đi xe đạp là \(\dfrac{3}{x+9}\left(h\right)\)
thời gian đi bộ là \(\dfrac{3}{x}\left(h\right)\)
đổi : 45p=\(\dfrac{3}{4}\left(h\right)\)
ta có phương trình:
\(\dfrac{3}{x}-\dfrac{3}{x+9}=\dfrac{3}{4}\)
⇔3.4.(x+9) - 3.4.x=3.x.(x+9)
⇔12x+108-12x-3x2-27x=0
<=>-3x2-27x+108=0
⇔ x=3 (tm)
x=-12 (loại)
vậy vận tốc đi bộ là 3km /h
a. Tứ giác AOBF nội tiếp vì có $\angle OAF=\angle OBF=90^o$
b. Chú ý rằng $OF\perp AB$ nên $OF\parallel AE$, ta biến đổi tỉ số bằng định lý Thales:
\(\dfrac{IK}{OF}=\dfrac{AK}{AF}=\dfrac{EG}{EO}=\dfrac{IG}{OF}\), vậy $IK=IG$
c. Nếu mình không nhầm thì PM không vuông NB, vì khi đó $M,P,E$ thẳng hàng, bạn có thể kiểm tra hình vẽ của mình :c
a, Thay m = -1 vào phương trình trên ta được
Ta có :
Vậy với m = -1 thì x = -5 ; x = 1
b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được :
Vậy với x = 2 thì m = -10/3
c, Để phương trình có 2 nghiệm phân biệt thì hay
Theo Vi et ta có :
(1)
suy ra :
Thay vào (1) ta được :
Mà
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}\Rightarrow\dfrac{BH}{30}=\dfrac{5}{6}\Rightarrow BH=25\)
Ta có
\(AH^2=BH.CH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{30^2}{25}=36\)
=> x=25; y=36
Ta có : \(xyz=1\rightarrow\left\{{}\begin{matrix}xy=\dfrac{1}{z}\\xz=\dfrac{1}{y}\\yz=\dfrac{1}{x}\end{matrix}\right.\)
Do đó : \(A=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)
\(A=1+x+y+z+xy+yz+xz+xyz\)
\(A=1+x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+1\)
\(A=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)+2\)
Áp dụng BĐT \(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)
Dấu \(=\) xảy ra \(\Leftrightarrow a=b\)
với \(x,y,z>0\) Ta được :
\(A\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}+2=2+2+2+2=8\)
Dấu \(=\) xảy ra \(\Leftrightarrow\)
\(\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\Rightarrow x=y=z=1\) ( vì \(x,y,z>0\) )
mình lớp 8 nha