cho x,y,z đôi một khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính giá trị của biểu thức : \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x+y+z\right)^3=1^3=1\)
Có : \(\left(x+y+z\right)^3-x^3-y^3-z^3=1-1\)
\(\Rightarrow\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)=0\)
\(\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)=0\)
\(\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]=0\)
\(\Rightarrow\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]=0\)
\(\Rightarrow3\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)
\(\Rightarrow\)y+z=0 hoặc x+z=0 hoặc x+y=0
Có : \(A=x^{2015}+y^{2015}+z^{2015}\)
\(=x^{2015}+\left(y+z\right)\left(y^{2014}-y^{2013}z+...+z^{2014}\right)\)
\(=y^{2015}+\left(x+z\right)\left(x^{2014}-x^{2013}z+...+z^{2014}\right)\)
\(=z^{2015}+\left(x+y\right)\left(x^{2014}-x^{2013}y+...+y^{2014}\right)\)
Với \(x+y=0\Rightarrow z=1\Rightarrow A=1+0=1\)
Tương tự với \(y+z=0;z+x=0\)đều có A=1
Vậy ...
Bài 2 :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)
Mà \(2018=a+b+c\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\left(b+c\right)=0\)
TH1 : \(a+b=0\Leftrightarrow a=-b\)
\(M=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{-b^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2014}}=\frac{1}{c^{2014}}\)
Mà \(a+b+c=2018\)
\(\Leftrightarrow-b+b+c=2018\)
\(\Leftrightarrow c=2018\)
Khi đó \(M=\frac{1}{2018^{2017}}\)
Các trường hợp còn lại tương tự
Kết quả cuối cùng : \(M=\frac{1}{2018^{2017}}\)
Câu hỏi của nguyễn thị phượng - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo bài 2 ở link này nhé!
d) 2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\) (1)
2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\) (2)
Từ (1) và (2) ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)
Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)
Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).
a) Tg OBD và Tg ECO có
g OBD = g ECO (tg ABC cân tại A) (1)
g BOD = g OEC (gt) (2)
(1) và (2) => Tg OBD đồng dạng Tg ECO
=>OB/EC = BD/CO => OB*CO = EC*BD.
Mà OB = CO => OBbình = EC*BD
b) Ta có: gDOE = 180 độ - (gBOD + gEOC)
= 180 độ - (gOEC + gCOE)
= 180 độ - (180 độ - gOCE)
= gOCE = gBCA = const (3)
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO =>
=> OD*BO = EO*BD => EO/OB = OD/BD (4)
Mặt khác: từ(3) =>gDOE = gOBD (5)
từ (4) và (5) => TgEOD đồng dạng TgOBD
Đặt \(B=xy=2013-A\) thế vô cái cần tìm thì được
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow x^2y^2+20x^4-10x^2+1=0\)
\(\Leftrightarrow20x^4-10x^2+1+B^2=0\)
\(\Leftrightarrow B^2=\frac{1}{4}-\left(\sqrt{20}x^2-\frac{\sqrt{5}}{2}\right)^2\le\frac{1}{4}\)
\(\Leftrightarrow-\frac{1}{2}\le B\le\frac{1}{2}\)
\(\Leftrightarrow-\frac{1}{2}\le2013-A\le\frac{1}{2}\)
\(\Leftrightarrow2012,3\le A\le2013,5\)
(x2+1/x^2-2)+(y2+1/y^2-2)=0
(x-1/x)^2+(y-1/y)^2=0
=>{x-1/x=0;y-1/y=0
(x2+1/x^2-2)+(y2+1/y^2-2)=0
(x-1/x)^2+(y-1/y)^2=0
=>{x-1/x=0;y-1/y=0
Ta có:
(n2−8)2+36
=n4−16n2+64+36
=n4+20n2+100−36n2
=(n2+10)2−(6n)2
=(n2+10+6n)(n2+10−6n)
Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1
Mặt khác ta có n2+10−6n<n2+10+6n n2+10−6n=1 (n thuộc N)
n2+9−6n=0 hay (n−3)2=0 n=3
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________
Ta có
(n^2-8)^2
=n^4-16n^2+100
=n^4+100+20n^2-36n^2
=(n^2+10)^2-(6n)^2
=(n^2+10-6n)*(n^2+10+6n)
thử 2 trường hợp ta được n=3 thì t/m
Áp dụng BĐT cho 2 số dương:
\(\frac{1}{\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Xét: c + 1 = c + a + b + c
\(\frac{ab}{\left(c+1\right)}\le\frac{ab}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+c\right)}\right]\)
Tương tự:
\(\frac{bc}{\left(a+1\right)}\le\frac{bc}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+a\right)}\right]\)
\(\frac{ca}{\left(b+1\right)}\le\frac{ac}{4}.\left[\frac{1}{\left(a+b\right)}+\frac{1}{\left(c+b\right)}\right]\)
Cộng lại:
\(\frac{ac}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{\left(b+1\right)}\le\frac{1}{4}\left\{\frac{ab}{\left(a+c\right)}+\frac{ab}{\left(b+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{ac}{\left(a+b\right)}\right\}\)
Cộng lại + rút gọn mẫu số
\(\frac{ab}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{b+1}\le\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu '=' xảy ra khi a = b = c
P/s: Sai đâu bạn sửa nhé!
Gọi x (phút ) là thời gian người khách đó đi từ A đến B
=> Trong x phút, người đó gặp \(\frac{x}{15}\) chuyến xe buýt đi từ A tới B đồng thời gặp \(\frac{x}{10}\) chuyến xe buýt đi từ B tới A
Nếu khi đến B, người đó quay về A ngay thì trong x phút: người đó gặp \(\frac{x}{15}\) chuyến đi từ B về A đồng thời \(\frac{x}{10}\) phút đi từ A về B
=> Trong vòng 2x (phút) người đó gặp : \(\frac{x}{15}\) + \(\frac{x}{10}\) = \(\frac{x}{6}\) (chuyến ) xe buýt đi từ A về B
=> Thời gian các xe lần lượt rời bến là sau: 2x : \(\frac{x}{6}\) = 12 phút
Gọi quãng đường nằm ngang là x
=> Thời gian đi trên đoạn nằm ngang đi về là 2x/15
=> Thời gian xuống dốc là 2(30 -x)/20 (xuống dốc lúc đi DB, xuống dốc lúc về AC, công lại chính là tổng đoạn đường trừ đi đường ngang)
=> Thời gian lên dốc là 2(30 -x)/10
*̀ 4h25 =4 + 5/12 = 53/12
Ta có phương trình
2[x/15 + (30 -x)/20 + (30-x)/10] = 53/12
Giải ra x
dat \(x^2-2x+2=y\)
ta co pt
\(y^4+20x^2y^2+64x^4\)
\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)
\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)
\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)
bạn thay y nữa là xong
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)
\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)
\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)
\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)
\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)
Đk: x,y,z khác 0.
ta có: \(\left(y-z\right)^2\ge0\Rightarrow y^2+z^2\ge2yz\Leftrightarrow x^2+y^2+z^2\ge x^2+2yz\Leftrightarrow\frac{yz}{x^2+2yz}\ge\frac{yz}{x^2+y^2+z^2}\)
tương tự thì \(A\ge\frac{xy}{x^2+y^2+z^2}+\frac{yz}{x^2+y^2+z^2}+\frac{xz}{x^2+y^2+z^2}=\frac{xy+yz+xz}{x^2+y^2+z^2}\)
từ đề bài =>\(\frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)
=> A =0
bạn giỏi lắm Nguyễn Thị BÍch Hậu