K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Đặt \(ab+4=m^2\)\(\left(m\in N\right)\)
\(\Rightarrow ab=m^2-4=\left(m-2\right)\left(m+2\right)\)

\(\Rightarrow b=\frac{\left(m-2\right)\left(m+2\right)}{a}\)
Ta có:  \(m=a+2\Rightarrow m-2=a\)
\(\Rightarrow b=\frac{a\left(a+4\right)}{a}=a+4\)
Vậy với mọi số tự nhiên \(a\) luôn tồn tại \(b=a+4\) để \(ab+4\) là số chính phương.

17 tháng 8 2016

Vinh nên sửa lại là chọn m = a + 2 thì bài toán sẽ chặt chẽ hơn.

13 tháng 12 2016

Bổ đề : Chứng minh tam giác nội tiếp đường tròn có 1 cạnh là đường kính đường tròn là tam giác vuông

A B C O 1 2

OA = OB = OC (bán kính của (O)) nên\(\Delta COA\) cân tại O có\(\widehat{A}=\widehat{C_1}\);\(\Delta COB\)cân tại O có\(\widehat{B}=\widehat{C_2}\)

\(\Delta ABC\)\(\widehat{A}+\widehat{ACB}+\widehat{B}=180^0\Leftrightarrow\widehat{C_1}+\widehat{ACB}+\widehat{C_2}=180^0\Leftrightarrow2\widehat{ACB}=180^0\Rightarrow\widehat{ACB}=90^0\left(đpcm\right)\)

A B M N C

Áp dụng cmt,ta có\(\Delta AMB,\Delta BNA\)lần lượt vuông tại M,N có : AM = BN ; AB chung

\(\Rightarrow\Delta AMB=\Delta BNA\left(ch-cgv\right)\Rightarrow\widehat{MBA}=\widehat{NAB}\)(2 góc tương ứng) =>\(\Delta ABC\)cân tại C.

13 tháng 12 2016

A B M N C

Vì AM = BN nên \(\text{sđcung}AM=\text{sđcung}BN\)

mà \(\widehat{ABM}\) và \(\widehat{BAN}\) lần lượt chắn hai cung này nên có số đo bằng nhau.

Từ đó suy ra đpcm.

10 tháng 8 2016

Bài này là chứng minh đường thẳng ơ le. 
cách 1:
 

Gọi E,FE,F lần lượt là trung điểm của BC,AC. Ta có EF là đường trung bình của tam giác ABC nên EF//AB.
Ta lại có OF//BH(cùng vuông góc với ACA). Do đó : ˆOFE=ˆABH

Tương tự ˆOEF=ˆBAH

Từ đó ta có tam giác ABH đồng dạng với tam giác EFO

Suy ra AH/OE=AB/EF=2

mà AG/GE=2.
Do đó: AG/EG=AH/OE=2
mà ˆHAG=ˆOEG

⇒ΔHAG∼ΔEOG⇒ˆHGA=ˆEGO

nên ˆHGA+ˆAGO=ˆHGO=180

Vậy H,G,O thẳng hàng.
C2 : dùng véc tơ để tính
C3: dựng đường tròn 9 điểm => ...

10 tháng 8 2016

Ta có : góc DCA = góc DBA = 90 độ ( góc nội tiếp chắn \(\frac{1}{2}\) (O)) 
Xét tứ giác \(BHCD,\) ta có :  \(BH\) // \(DC\) ( vì cùng vuông góc với \(AC\)
                                                \(CH\)// \(DB\) ( vì cùng vuông góc với AB ) 
Do đó tứ giác \(BHCD\) là hình bình hành . 
\(\Rightarrow\) \(H,\)\(I,\)\(D\) thẳng hàng và \(IH=ID\) (tính chất đường chéo hình bình hành) 
Ta lại có : \(OI=\frac{1}{2}AH\) ( đường trung bình tam giác \(DAH\) )                                        \(\left(1\right)\) 
               \(GI=\frac{1}{2}GA\) (tính chất trọng tâm của \(ABC\) )                                               \(\left(2\right)\)
Góc\(HAG\) =    góc \(GIO\) ( so le trong vì \(AH\) // \(OI\) )                                               \(\left(3\right)\)
Do đó tam giác \(GAH\) đồng dạng tam giác \(GIO\) ( c.g.c) 
\(\Rightarrow\) góc \(HGA\) =    góc \(IGO\) (góc tương ứng của 2 tam giác đồng dạng ) 
Vì góc \(HGA\) và góc \(IGO\) là 2 góc ở vị trí đối đỉnh bằng nhau nên ta suy ra \(H,\) \(G,\)\(O,\)thẳng hàng . 
Vậy trong 1 tam giác trực tâm, trọng tâm, tâm đường tròn ngoại tiếp cùng nằm trên 1 đường thẳng đó là đường thẳng Euler !

19 tháng 2 2020

Gọi giao điểm của đg thẳng vuông góc với AD cắt AD tại T

Xét tam giác ANC vuông tại C và tam giác ANT vuông tại T có

       AN^2=AT^2 + TN^2       (Đlí Py-ta-go)

       AN^2=CN^2 + AC^2

=> AT^2+TN^2=CN^2+AC^2     (1)

 Xét tam giác TND vuông tại T, tam giác KDT vuông tại T, tam giác ATK vuông tại T, tam giác ABK vuông tại B có

     ND^2=TD^2+TN^2

     KD^2=TD^2+TK^2

     AK^2=AT^2+TK^2

     AK^2=AB^2+BK^2

=>(1) <=> AC^2 + NC^2-NT^2 =AT^2

Mà NC=ND( Vì N là trung điểm của CD ) ;AB=AC (GT)

 => AC^2+NC^2-NT^2=AT^2 <=> AC^2 + ND^2 - NT^2 = AT^2

                                              <=> AC^2 + (ND^2 - NT^2)= AT^2

                                              <=>AB^2 + TD^2 = AT^2

                                              <=> AB^2+(KD^2 - KT^2) = AT^2

                                              <=> AB^2 + KD^2 - KT^2 =AT^2

                                              <=> KD^2 - ( KT^2 + AT^2)= -(AB)^2

                                              <=> KD^2 - AK^2 = -(AB)^2

                                              <=> KD^2 = AK^2 - AB^2

                                              <=> KD^2 = BK^2

                                              <=> KD = KB

Vậy KB = KD 

23 tháng 2 2020

Gọi giao điểm của dường thẳng vuông góc với AD cắt AD tại T

Xét tam giác ANC vuông tại C và tam giác ANT vuông tại T , ta có :

\(AN^2=AT^2+TN^2\)( định lí Py-ta-go )

\(AN^2=CN^2+AC^2\)

\(\Rightarrow AT^2+TN^2=CN^2+AC^2\left(1\right)\)

Xét tam giác TND vuông tại T , KDT vuông tại T , ATK vuông tại T , ABK vuông tại B : Ta có :

\(ND^2=TD^2+TN^2\)

\(KD^2=TD^2+TK^2\)

\(AK^2=AT^2+TK^2\)

\(AK^2=AB^2+BK^2\)

\(\Rightarrow\left(1\right)\Leftrightarrow AC^2+NC^2-NT^2=AT^2\)

Mà NC = ND ( Vì N là trung điểm của CD ) 

AB = AC(gt)

\(\Rightarrow AC^2+NC^2-NT^2=AT^2\Leftrightarrow AC^2+ND^2-NT^2=AT^2\)

\(\Leftrightarrow AC^2+\left(ND^2-NT^2\right)=AT^2\)

\(\Leftrightarrow AB^2+TD^2=AT^2\)

\(\Leftrightarrow AB^2+\left(KD^2-KT^2\right)=AT^2\)

\(\Leftrightarrow AB^2+KD^2-KT^2=AT^2\)

Bạn tự làm tiếp nhé~

19 tháng 2 2020

Ta có: \(ab=c\left(a-b\right)\)

<=> \(c^2=ac-bc-ab+c^2\)

<=> \(c^2=a\left(c-b\right)+c\left(c-b\right)\)

<=> \(c^2=\left(c-b\right)\left(a+c\right)\)

Đặt: ( c - b ; a + c ) = d 

=> \(c^2⋮d^2\)=> \(c⋮d\)(1)

và \(\hept{\begin{cases}c-b⋮d\\a+c⋮d\end{cases}}\)(2)

Từ (1); (2) => \(b;a⋮d\)(3)

 Từ (1); (3) và (a; b ; c ) =1

=> d = 1  hay c - b; a + c nguyên tố cùng nhau 

Mà \(\left(c-b\right)\left(a+c\right)=c^2\)là số chính phương 

=> c - b ; a + c là 2 số chính phương 

Khi đó tồn tại  số nguyên dương u, v sao cho: \(c-b=u^2;a+c=v^2\)khi đó: \(c^2=u^2.v^2\)<=> c = uv  ( vì c, u,, v nguyên dương )

Ta có: \(a-b=\left(a+c\right)+\left(c-b\right)-2c\)

\(=u^2+v^2-2uv=\left(u-v\right)^2\) là số chính phương.

19 tháng 2 2020

+) Ta có: 1 số chia 5 có số dư là: 0; 1; 2; 3; 4

=> 1 số chính phương chia 5 sẽ có số dư là: 0; 1; 4

=> Lũy thừa bậc 4 của 1 số tự nhiên chia 5 sẽ có số dư là: 0; 1 

=>  các số \(a^4;b^4;c^4\) chia cho 5 sẽ có bộ 3 số dư là: 0; 0; 0 hoặc 1;1;1 hoặc 1; 0; 0 hoặc 1; 1; 0

Nếu \(a^4;b^4;c^4\)chia  cho 5 sẽ có bộ 3 số dư là:  1;1;1 hoặc 1; 1; 0

=> \(a^4+b^4+c^4\)chia cho 5 có số dư là 3 hoặc 2  vô lí vì \(a^4+b^4+c^4\) là một số chinh phương chia 5 dư 0; 1; 4

Do đó tồn tại 2 số trong 3 số chia cho 5 dư 0 hay chia hết cho 5

=> Giả sử đó là \(a^4⋮5\) và \(b^4⋮5\) => \(a,b⋮5\)=> \(abc⋮25\)(1)

+) Xét các trường hợp chẵn lẻ: nhận xét: Số chính phương chẵn chia 8 dư 0 hoặc 4; Số chính phương lẻ chia 8 dư 1 

=> Lũy thừa bậc 4 của 1 số tự nhiên chẵn chia hết cho 8;  Lũy thừa bậc 4 của 1 số tự nhiên lẻ chia 8 dư 1

Nếu a, b, c lẻ => \(a^4+b^4+c^4\)chia 8 dư 3  loại 

Nếu 2 trong 3 số a, b, c lẻ => \(a^4+b^4+c^4\)chia 8 dư 2 loại

=> Tồn tại 2 trong 3 số a, b, c là số chẵn 

=> \(abc⋮4\)(2)

từ (1); (2) và (4;25) = 1; 4.25=100

=> \(abc⋮100\)

24 tháng 11 2016

A B C D E I K M T

gọi giao của BK và CI là T

ta có : Ab=AC=>tam giác ABC cân tại A

=> góc ABC= góc ACB

ABD=180o-ABC

ACE=180o-ACB

=> góc ABD= góc ACE

xét tam giác ABD và tam giác ACE có:

BD=CE(gt)

góc ABD=góc ACE

AB=AC(gt)

=> tam giác ABD=tam giác ACE(c.g.c)

=> AK=AE=> tam giác AKE cân tại A

MB=MC

BD=CE

MD=MB+BD

ME=MC+CE

=> MD=ME

tam giác AKE cân tại A có AM là đường trung tuyến=> AM đồng thời là phân giác góc KAE(1)

xét 2 tam giác vuông KBD và ICE có:

góc D= góc E(tam giác AKE cân tại A)

DB=EC(gt)

=>tam giác KBD=tam giác ICE(CH-GN)

=>KD=IE

AD=AE

AK=AD-DK

AI=AE-IE

=> AK=AI

xét 2 tam giác vuông AKB và tam giác AIC có:

AK=AI(cmt)

AB=AC(gt)

=>tam giác AKB=tam giác AIC(CH-CGV)

=> AT là tia phân giác góc KAE(2)

từ (1)(2)=> AI trùng AM=> A,M,T thẳng hàng

=> AM,BK,CT đồng quy tại T

24 tháng 11 2016

bang 8

15 tháng 2 2020

A B E D C F

Lấy điểm F sao cho ^BCF = 90o  => ^ACF = ^ABC = 19o => ^DCA = ^FCA = 19o 

Có ^ECF + ^ECB  = ^BCF = 90o 

^CFE + ^EBC = 180o - ^BCF = 90o 

Mà ^ECB = ^EBC = 19 (1)

=> ^ECF = ^EFC => \(\Delta\)FEC cân => FE = EC 

(1) => => \(\Delta\)EBC cân => EB = EC 

=> FE = EB 

=> FE = \(\frac{1}{2}\)BF 

=> AE + AF = \(\frac{1}{2}\)( BD + DF ) 

Mặt khác \(\Delta\)DCF có: ^DCA = ^ACF (= 19o) do đó CA phân giác ^DCF  mà CA là đường cao \(\Delta\)DCF

=> \(\Delta\)DCF cân  tại C => A là trung điểm DF => DF = 2AF

=> AE + AF = \(\frac{1}{2}\)BD + \(\frac{1}{2}\)DF 

=> AE + AF = \(\frac{1}{2}\)BD + AF 

=> AE = \(\frac{1}{2}\)BD 

=> BD / AE = 2

27 tháng 12 2016

A B C D

Ta có

\(AD^2+2CD^2+3BD^2=AB^2-BD^2+2\left(BC^2-BD^2\right)+3BD^2\)

\(=AB^2+2BC^2=AB^2+BC^2+CA^2\)

\(\Rightarrow\)ĐPCM

27 tháng 12 2016

mình không biết mk mới học lớp 7

28 tháng 4 2015

f(x) chia hết cho 3 với mọi x

=> f(0) chia hết cho 3 => C chia hết cho 3 

f(1) ; f(-1) chia hết cho 3 

=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3

=> f(1) + f(-1) chia hết cho 3 và  f(1) -  f(-1) chia hết cho 3 

f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3

f(1) - f(-1) chia hết cho 3  => 2B chia hết cho 3 => B chia hết cho 3

Vậy.......................

28 tháng 4 2015

f(x) chia hết cho 3 với mọi x

=> f(0) chia hết cho 3 => C chia hết cho 3 

f(1) ; f(-1) chia hết cho 3 

=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3

=> f(1) + f(-1) chia hết cho 3 và  f(1) -  f(-1) chia hết cho 3 

f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3

f(1) - f(-1) chia hết cho 3  => 2B chia hết cho 3 => B chia hết cho 3

Vậy.......................