Giải tam giác vuông ở A. biết:
a)a=6, c=5
b)a=7, \(\widehat{B}=41\)độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a^2+b^2}{a-b}\)= \(\frac{a^2-2ab+b^2+2ab}{a-b}\)= \(\frac{\left(a-b\right)^2+2ab}{a-b}\)= (a -b) + \(\frac{2ab}{a-b}\)
Vì a>b>0 nên áp dụng BĐT Cô-Si cho 2 số không âm ta có :
(a - b) +\(\frac{2ab}{a-b}\)\(\ge\)\(2\sqrt{\left(a-b\right)\cdot\frac{2ab}{a-b}}\)= 2\(\sqrt{2ab}\)= \(2\sqrt{2}\)( Vì ab = 1) ( đpcm)
\(C=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x-\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\) (tự tìm ĐKXĐ)
\(=\frac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}-1\right)+2\left(\sqrt{x}+1\right)\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}+1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+3\)
GTNN:\(x-\sqrt{x}+3=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
\(\Rightarrow Min\left(C\right)=\frac{11}{4}khi..\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
Dấu ở giữa là cộng chứ nhỉ??
Đặt \(y=\sqrt[3]{a+\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}};z=\sqrt[3]{a-\frac{a+1}{3}\sqrt{\frac{8a-1}{3}}}\)
\(\Rightarrow\hept{\begin{cases}y^3+z^3=2a\\yz=\sqrt[3]{a^2-\frac{\left(a+1\right)^2\left(8a-1\right)}{27}}\\y+z=x\end{cases}=\sqrt[3]{\frac{27a^2-\left(8a^3+15a^2+6a-1\right)}{27}}=\sqrt[3]{\frac{\left(1-2a\right)^3}{27}}=\frac{1-2a}{3}}\)
Thay vào ta được:
\(x^3=\left(y+z\right)^3=y^3+z^3+3yz\left(y+z\right)\)\(=2a+3\frac{1-2a}{3}x=2a+\left(1-2a\right)x\)
\(\Leftrightarrow x^3-\left(1-2a\right)x-2a=0\)
\(\Leftrightarrow x^3-x+2ax-2a=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2a+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2+2a+x=0\end{cases}}\)
Đến đây thì có lẽ là sẽ cm được \(x^2+2a+x>0\), mình chưa tìm ra cách cm.
KL : \(x=1\inℤ\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=6abc\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)=6abc\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=3abc\)
Đến đây ta chỉ cần chứng minh \(a^2+b^2+c^2-ab-bc-ca=a^3+b^3+c^3\)
Nhưng rõ ràng: \(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ne a^2+b^2+c^2-ab-bc-ca\)
KL : Đề sai.
Chứng minh : a3 + b3 + c3 = 3abc \(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(tm\right)\\a=b=c\left(loai\right)\end{cases}}\)
Rút gọn P
\(P=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ac\left(c-a\right)}{abc}\)
Xét : ab(a-b) + bc(b-c) + ac(c-a) = ab[-(b-c)-(c-a)] + bc(b-c) + ac(c-a)
= (b-c)(bc-ab) + (c-a)(ac-ab) = b(b-c)(c-a) + a(c-a)(c-b) = (c-a)(c-b)(a-b)
\(\Rightarrow P=\frac{\left(c-a\right)\left(c-b\right)\left(a-b\right)}{abc}\)
Rút gọn Q
Đặt a - b = z ; b-c = x ; c - a = y
\(\Rightarrow\)x- y = a + b - 2c = -c - 2c = -3c ( do a + b + c = 0 )
y - z = -3a ; z - x = -3b
\(\Rightarrow\)\(-3Q=\frac{\left(y-z\right)}{x}+\frac{\left(z-x\right)}{y}+\frac{\left(x-y\right)}{z}\)
Làm tương tự như rút gọn P, ta có :
\(-3Q=\frac{\left(x-y\right)\left(z-y\right)\left(z-x\right)}{xyz}=\frac{-\left(-3a\right)\left(-3b\right)\left(-3c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{27abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-27abc}{\left(a-b\right)\left(c-b\right)\left(c-a\right)}\)
\(\Rightarrow Q=\frac{9abc}{\left(a-b\right)\left(c-b\right)\left(c-a\right)}\)
\(\Rightarrow PQ=9\)
Xét phân thức phụ sau, với n nguyên dương lớn hơn 1 ta có:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{2\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2\sqrt{n}}=2\left(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}\right)\sqrt{n}}\right)\)
\(=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
=> \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán ta được:
\(A=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)
\(A=2-\frac{2}{\sqrt{2020}}< 2=B\)
Vậy A < B
Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố
Xét n>1:\(A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\)
\(=n^2\left(\left(n^3\right)^{670}-1\right)+n\left(\left(n^3\right)^{667}-1\right)+\left(n^2+n+1\right)\)
Mà \(\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^3-1\)
\(\Rightarrow\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^2+n+1\)
Tương tự \(\left(\left(n^3\right)^{667}\right)\)chia hết cho \(n^2+n+1\)
Vậy A chia hết cho \(n^2+n+1>1\)nên A là hợp số.Vậy \(n=1\)
Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố
Xét n>1:A=n2012−n2+n2002−n+n2+n+1
=n2((n3)670−1)+n((n3)667−1)+(n2+n+1)
Mà ((n3)670−1)chia hết cho n3−1
⇒((n3)670−1)chia hết cho n2+n+1
Tương tự ((n3)667)chia hết cho n2+n+1
A chia hết cho n2+n+1>1nên A là hợp số.Vậy n=1
:v kí hiệu vậy ai biết ở đâu
coi b là cạnh huyền nhé!
Áp dụng Pythagoras cho b = căn 61
Dùng sin cos .-.