Bài 1 thực hiện phép tính
1) (x^2-2x-1).(x-3)
2) (-x+4).(-x^2+4x-1)
3) (2x-1).(x^2-5x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a < b + c
=> a + a <a + b + c
=> 2a < 2
--> a < 1
Tương tự ta có : b < 1,c < 1
Suy ra: (1 − a)(1 − b)(1 − c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < − 1 + ab + bc + ca
⇔ 2abc < − 2 + 2ab + 2bc + 2ca
⇔ a^2 + b^2 + c^2 + 2abc < a^2 + b^2 + c^2 – 2 + 2ab + 2bc + 2ca
⇔ a^2 + b^2 + c^2 + 2abc < (a + b + c)^2 − 2
⇔ a^2 + b^2 + c^2 + 2abc < 2^2−2 = 2
⇔ dpcm
ukm!khó bn nhỉ?đúng là 1 bài toán hay vs đáng cân nhắc ,tham khảo thêm.....mọi người nhớ kb với mik nha!!!yêu nhìu>_<
Sử dụng BĐT Cauchy Schwarz ta dễ có:
\(P=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
\(\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Ta cần chứng minh: \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\)
\(\Leftrightarrow\left(x+y\right)^2-8\left(x+y\right)+16\ge0\)
\(\Leftrightarrow\left(x+y-4\right)^2\ge0\)( ĐPCM )
Có : \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Theo BĐT Cô - si ta có :
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=4x\)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Do đó ; \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4.\left(x+y-2\right)\ge4\left(x+y\right)\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Hay : \(P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy \(P_{min}=8\) khi \(x=y=2\)
Xét n = 0 thì \(A=1\left(l\right)\)
Xét n = 1 thì \(A=3\left(nhan\right)\)
Xét \(n\ge2\)
Ta có:
\(A=n^{2018}+n^{2011}+1\)
\(=\left(n^{2018}-n^2\right)+\left(n^{2011}-n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(\left(n^3\right)^{672}-1\right)+n\left(\left(n^3\right)^{670}-1\right)+\left(n^2+n+1\right)\)
\(=\left(n^3-1\right)X+\left(n^3-1\right)Y+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)X'+\left(n^2+n+1\right)Y'+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+Y'+1\right)\)
Với \(n\ge2\) thì A là tích của 2 số khác 1 nên không thể là số nguyên tố được.
Vậy n cần tìm là 1.
Sử dụng tính chất tam giác đồng dạng và bất đẳng thức tam giác.
Dựng điểm E sao cho tam giác BCD đồng dạng với tam giác BEA. Khi đó, theo tính chất của tam giác đồng dạng, ta có
\(\frac{BA}{EA}=\frac{BD}{CD}\)
Suy ra \(BA.CD=EA.BD\left(1\right)\)
Mặt khác, tam giác EBC và tam giác ABD cũng đồng dạng do có
\(\frac{BA}{BD}=\frac{BE}{BC}\) và góc EBC= góc ABD
Từ đó
\(\frac{EC}{BC}=\frac{AD}{BD}\)
Suy ra
\(AD.BC=EC.BD\left(2\right)\)
Cộng (1) và (2) ta suy ra
\(AB.CD+AD.BC=BD.\left(EA+EC\right)\)
Áp dụng bất đẳng thức tam giác ta suy ra \(AB.CD+AD>BC\ge AC>BD\)
Dấu bằng xảy ra khi và chỉ khi tứ giác nội tiếp trong một đường tròn và trở thành định lý Ptoleme.
Lớp 8 đã học tứ giác nội tiếp đâu mà bạn đã kết luận như vậy rồi.Bạn làm theo ý tưởng trên Wikipedia cũng phải chỉ rõ cách dựng điểm E ; kết luận dấu = xảy ra khi E,C,A thẳng hàng rồi từ đó suy ra tổng 2 góc đối của tứ giác bằng 1800
1/ Thay x=-4 vao A -> A= \(\frac{-4}{-4+3}\)= 4
2/ B=\(\frac{2}{x-3}\)+\(\frac{x-15}{x^2-9}\)
B= \(\frac{2\left(x+3\right)+x-15}{\left(x-3\right)\left(x+3\right)}\)
B= \(\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{3}{x+3}\)
c, B>A <=> \(\frac{3}{x+3}\)> \(\frac{x}{x+3}\)
<=> \(\frac{3}{x+3}\)- \(\frac{x}{x+3}\)> 0
<=> \(\frac{3-x}{x+3}\)>0
<=> 3-x <0 / >0 ( Đkxd x khác -3 )
x+3 <0 / >0
..............
...............................
Vậy ...
1) \(A=\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))
Với x = -4 ( tmđk ) thì giá trị của A là
\(A=\frac{-4}{-4+3}=\frac{-4}{-1}=4\)
2) \(B=\frac{2}{x-3}+\frac{x-15}{x^2-9}\)( ĐKXĐ : \(x\ne\pm3\))
\(B=\frac{2}{x-3}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)
\(B=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
3) Để B > A
=> \(\frac{3}{x+3}>\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))
<=> \(\frac{3}{x+3}-\frac{x}{x+3}>0\)
<=> \(\frac{3-x}{x+3}>0\)
Xét hai trường hợp :
1.\(\hept{\begin{cases}3-x>0\\x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-3\\x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}\Leftrightarrow-3< x< 3\)( tmđk )
2. \(\hept{\begin{cases}3-x< 0\\x+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -3\\x< -3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}}\)( loại )
Vì x nguyên => x ∈ { -2 ; -1 ; 0 ; 1 ; 2 ; 3 }
Vậy ...
A = (x - 2)(x2 + 2x + 4) - x(x - 2)(x + 2) - 2(2x + 1)
= x(x2 + 2x + 4) - 2(x2 + 2x + 4) - x(x2 - 4) - 2(2x + 1)
= x3 + 2x2 + 4x - 2x2 - 4x - 8 - x3 + 4x - 4x - 2
= (x3 - x3) + (2x2 - 2x2) + (4x - 4x + 4x - 4x) + (-8 - 2) = -10 => không phụ thuộc vào x
B = (x + 1)3 - x(x - 2)2 - 7(x2 + 1) - (1 - x) + 2
= x3 + 3x2 + 3x + 1 - x(x - 2)(x - 2) - 7x2 - 7 - 1 + x + 2
= x3 + 3x2 + 3x + 1 - x(x2 - 4x + 4) - 7x2 - 7 - 1 + x + 2
= x3 + 3x2 + 3x + 1 - x3 + 4x2 - 4x - 7x2 - 7 - 1 + x + 2 = (x3 - x3) + (3x2 + 4x2 - 7x2) + (3x - 4x + x) + (1 - 7 - 1 + 2) = - 5 => không phụ thuộc vào x
\(\frac{a+b}{a-b}.\frac{b+c}{b-c}+\frac{b+c}{b-c}.\frac{c+a}{c-a}+\frac{c+a}{c-a}.\frac{a+b}{a-b}\)\(=\frac{\left(a+b\right)\left(b+c\right)\left(c-a\right)+\left(b+c\right)\left(c+a\right)\left(a-b\right)+\left(c+a\right)\left(a+b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b^2+ab+bc+ca\right)\left(c-a\right)+\left(c^2+ab+bc+ca\right)\left(a-b\right)+\left(a^2+ab+bc+ca\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b^2c+bc^2+c^2a-ab^2-a^2b-ca^2\right)+\left(c^2a+a^2b+ca^2-bc^2-ab^2-b^2c\right)+\left(a^2b+ab^2+b^2c-ca^2-bc^2-c^2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(a^2b-ca^2\right)+\left(b^2c-bc^2\right)-\left(ab^2-c^2a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(b-c\right)\left(a^2+bc-ab-ac\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)
a/
Ta có BG vuông góc AB; CH vuông góc AB => BG//CH
Ta có BH vuông góc AC; CG vuông góc AC => BH//CG
=> BHCG là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một)
M là giao 2 đường chéo của hình bình hành BHCG => M là trung điểm của BC (trong hình bình hành hai đường chéo cắt nhau tại trung điểm mỗi đường)
b/ Ta có H trực tâm của tg ABC => AH vuông góc BC; AB vuông góc CE => ^PAH = ^HCM (góc có cạnh tương ứng vuông góc) (1)
Ta có PQ vuông góc HG (đề bài) và AB vuông góc CE (đề bài) => ^APH = ^CHM (góc có cạnh tương ứng vuông góc) (2)
Từ (1) và (2) => tg CMH đồng dạng với tg AHP
c/
1) (x2 - 2x - 1)(x - 3)
= x2(x - 3) - 2x(x - 3) - 1(x - 3)
= x3 - 3x2 - 2x2 + 6x - x + 3
= x3 - 5x2 + 5x + 3
2. (-x + 4)(-x2 + 4x - 1)
= -x(-x2 + 4x - 1) + 4(-x2 + 4x - 1)
= x3 - 4x2 + x - 4x2 + 16x - 4
= x3 - 8x2 + 17x - 4
3 ) (2x - 1)(x2 - 5x + 3)
= 2x(x2 - 5x + 3) - 1(x2 - 5x + 3)
= 2x3 - 10x2 + 6x - x2 + 5x - 3
= 2x3 - 11x2 + 11x - 3
Bài làm :
1) (x2 - 2x - 1)(x - 3)
= x2(x - 3) - 2x(x - 3) - 1(x - 3)
= x3 - 3x2 - 2x2 + 6x - x + 3
= x3 - 5x2 + 5x + 3
2) (-x + 4)(-x2 + 4x - 1)
= -x(-x2 + 4x - 1) + 4(-x2 + 4x - 1)
= x3 - 4x2 + x - 4x2 + 16x - 4
= x3 - 8x2 + 17x - 4
3 ) (2x - 1)(x2 - 5x + 3)
= 2x(x2 - 5x + 3) - 1(x2 - 5x + 3)
= 2x3 - 10x2 + 6x - x2 + 5x - 3
= 2x3 - 11x2 + 11x - 3