chứng minh rằng các phân số sau có thể viết dưới dạng tổng các phân số có tử bằng 1 , mẫu dương và khác nhau
a) \(\frac{1}{6}\)
b) \(\frac{15}{22}\)
c) \(\frac{5}{11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể là có. Bởi vì khi bạn xóa 2 số cuối thì được hiệu là 1 (vì là 2014 và 2015), rồi 2 số 2011 và 2013, 2012 và 2009,... thì bạn sẽ ra được hiệu là 1,2,3,4,... và ra hiệu là 0 với các số 1,2,3,4,... cho sẵn.
Mong rằng là đúng! (bạn có thể hỏi giáo viên của OLM bằng cách gửi tin nhắn theo địa chỉ: http://olm.vn/thanhvien/loanloan92 (tên đăng nhập là loanloan92 đó!!!)
CHÚC BẠN HỌC TỐT!
mik xin loi co the chu
2015-2014=1
2013-2012=1
cu the tren bang co
(2015-1):2=1007 con so 1
cong voi con so 1 con du ra thi co 1008 con so 1
roi tru xoa them
1008:2=504 con so 1
thi ta seco 504 con so 0
ma 0-0 =0 nen tren bang van co the co con so 0
ta có : \(a=\frac{bc}{d}\)nên : \(a+d>b+c\Leftrightarrow\frac{bc}{d}+d>b+c\Leftrightarrow bc+d^2>bd+cd\)
\(\Leftrightarrow bc-bd-cd+d^2>0\Leftrightarrow\left(b-d\right)\left(c-d\right)>0\) điều này luôn đúng do b>c>d
Vậy ta có đpcm
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Để pq+17 >2 là số nguyên tố thì pq là số chẵn
=> p chia hết 2 hoặc q chia hết 2
Vì p, q là số nguyên tố nên có 2 trường hợp xảy ra:
TH1: p=2
=> 7.p+q=7.2+q=14+q
q là số nguyên tố
+) q=3
Ta có: 7x2+3=17 là số nguyên tố
2x3+17=23 là số nguyên tố
=> q=3 thỏa mãn
+) q chia 3 dư 1 => q=3k+1 (k thuộc N)
7p+q=14+3k+1=15+3k chia hết cho 3 không phải là số nguyên tố
nên trường hợp này loại
+) q chia 3 dư 2 => q=3k+2 ( k thuộc N)
pq+17=(3k+2).2+17=6k+21 chia hết cho 3 không phải là số nguyên tố
nên trường hợp này cũng bị loại
Vậy p=2, q=3 là thỏa mãn
TH2: q=2
Ta có: 7p+q=7p+2
pq+17=2p+17
Vì: p là số nguyên tố ta có các trường hợp nhỏ sau:
+) Với p=3
=> 7p+2=23 là số nguyên tố
2p+17=23 là số nguyên tố
=> p =3 thỏa mãn
+) Với p chia 3 dư 1 => p=3k+1 ( k thuộc N)
7p+2=7(3k+1)+2=21k+9 chia hết cho 3 nên không phải là số nguyên tố nên loại
+Với p chia 3 dư 2 => p=3k+2
2p+17=2(3k+2)+17=6k+21 chia hết cho 3 nên không phải là số nguyên tố nên loại
Vậy q=2, p=3 là thỏa mãn
Kết luận cả 2 TH: p=2, q=3 hoawch q=2, p=3
gọi 6 số tn lần lượt là :a;b;c;d;e;f
tổng 6 số trên là : a+b+c+d+e+f= 60
trung bình cộng của 5 số cuối =11=>b+c+d+e+f=55=>a=60-55=5
__________________số đầu=9=>a+b+c+d+e=45+=>f=60-45=15
thay a=5, f=15 vào : a+b+c+d+e+f=60 , ta có: 5+b+c+d+e+15=60
=>b+c+d+e =60-5-15=40
trung bình cộng của : a+b+c+d+e= 40:4=10
Vậy trung bình cộng của 4 số ở giữa là 10
gọi 6 số tn lần lượt là :a;b;c;d;e;f
tổng 6 số trên là : a+b+c+d+e+f= 60
trung bình cộng của 5 số cuối =11=>b+c+d+e+f=55=>a=60-55=5
__________________số đầu=9=>a+b+c+d+e=45+=>f=60-45=15
thay a=5, f=15 vào : a+b+c+d+e+f=60 , ta có: 5+b+c+d+e+15=60
=>b+c+d+e =60-5-15=40
trung bình cộng của : a+b+c+d+e= 40:4=10
Vậy trung bình cộng của 4 số ở giữa là 10
a) CD//Ey
=> ^CBE = ^BEy = 130o
b) Ta có ^xAB + ^ABD = 180o
=>Ax // CD
Mà CD // Ey
=> Ax//Ey
C.
Có CD//Ey (giả thiết)
=>^DBE+^BEy=180 (hai góc ở vị trí trong cùng phí
=>^DBE=180-^BEy=180-130=50
Có ^ABD+^DBE=40+50=90
=>^ABE=90
=>AB vuông góc BE (ĐPCM)
Nhận thấy n=2 thỏa mãn điều kiện
Với n>2 ta có:
\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)
Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)
Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)
Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)
Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)
Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)
Vì \(n>2\Rightarrow k\ge2\)
do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)
Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)
Vậy n=2
Bài làm rất hay mặc dù làm rất tắt.
Tuy nhiên:
Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )
------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc \(n^2-1\)
Hoặc: ước số nguyên tố của \(n^2-n+1\) là ước \(n^3-1\) hoặc \(n^2-1\)
Dòng thứ 6 cũng như vậy:
a chia hết b khác hoàn toàn a chia hết cho b
a chia hết b nghĩa là a là ước của b ( a |b)
a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))
3 dòng cuối cô không hiểu em giải thích rõ giúp cô với. Please!!!!
Nhưng cô có cách khác dễ hiểu hơn này:
\(n^2-n+1=3^k\);
\(n+1⋮3\)=> tồn tại m để : n + 1 = 3m
=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)
<=>\(3m\left(n+1-3\right)+3=3^k\)
<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)
=> \(m\left(n+1\right)-3m+1⋮3\)
=> \(1⋮3\)vô lí
Mình cũng xin góp 1 phần ý kiến về cách viết này
a/ \(\frac{1}{6}=\frac{1}{7}+\frac{1}{42}=\frac{1}{8}+\frac{1}{24}\) (tìm được 2 cái nên chép cả 2 cho b luôn)
b/ \(\frac{15}{22}=\frac{1}{2}+\frac{1}{11}+\frac{1}{12}+\frac{1}{132}\)
c/ \(\frac{5}{11}=\frac{1}{33}+\frac{1}{11}+\frac{1}{3}\)
Mình nghĩ bạn Lan Hương với Thùy Dung nên xem lại bài của 2 bạn nhé. Mình nghĩ là câu a và b 2 bạn chưa được chính xác lắm
mnh=9+789065=jhkil