Phân tích đa thức thành nhân tử
a_\(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)
b) \(3a^2x-3a^2y+abx-aby\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng cách đánh giá quen thuộc
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\left(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\right)^2\)
Hay \(\sqrt{3\left(a^2+b^2+c^2\right)}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Ta cần chỉ ra được \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, Cần chú ý đến \(a^2+b^2+c^2\). Ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Ta cần chứng minh được
\(\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Hay \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Dễ thấy \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Do đó \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)
Theo bất đẳng thức Bunhiacopxki
\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)
Do đó ta được \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Bài toán được chứng minh :3
P/S : Câu 2,3 kết quả bằng bao nhiêu mới tìm được x ?
1.\(\left(2x-7\right)^2-4\left(x-3\right)=5\)
=> \(\left(2x\right)^2-2\cdot2x\cdot7+7^2-4x+12=5\)
=> \(4x^2-28x+49-4x+12=5\)
=> \(4x^2-32x+61=5\)
=> \(4x^2-32x+61-5=0\)
=> \(4x^2-32x+56=0\)
=> \(4\left(x^2-8x+14\right)=0\)
=> \(x^2-8x+14=0\)
=> \(\orbr{\begin{cases}x=4-\sqrt{2}\\x=\sqrt{2}+4\end{cases}}\)
4.\(\left(3x-1\right)^2-6\left(x-1\right)\left(x+1\right)-3x\left(x-2\right)=7\)
=> \(\left(3x\right)^2-2\cdot3x\cdot1+1^2-6\left(x^2-1\right)-3x^2+6x=7\)
=> \(9x^2-6x+1-6x^2+6-3x^2+6x=7\)
=> \(\left(9x^2-6x^2-3x^2\right)+\left(-6x+6x\right)+\left(1+6\right)=7\)
=> 7 = 7(đúng)
5. \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
=> \(x^2+2\cdot x\cdot3+3^2-x\left(x+8\right)+4\left(x+8\right)=1\)
=> x2 + 6x + 9 - x2 - 8x + 4x + 32 = 1
=> (x2 - x2) + (6x - 8x + 4x) + (9 + 32) = 1
=> 2x + 41 = 1
=> 2x = -40
=> x = -20
a)Xét tam giác AKC và tam giác AHB có
Góc A chung
AB=AC(ABC cân)
góc AKC=góc AHB(=90 độ)
Suy ra tam giác AKC=tam giác AHB(g.c.g)
Suy ra AK=AH(hai góc tương ứng)
Vậy AKH là tam giác cân
Ta có góc AKH=(180 độ -góc A)/2
lại có góc ABC=(180 độ -góc A)/2
vậy góc AKH=góc ABC
MÀ hai góc này nằm ở vị trí đồng vị nên KH//BC
Vậy tứ giácBCHK là hình thang
Ta lại có góc B = góc C(ABC cân)
Suy ra tứ giác BCHK là hình thang cân
Bài giải
a, Xét \(\Delta KBC\) và \(\Delta HCB\)có :
\(\widehat{BKC}=\widehat{CHB}=90^o\text{ }\left(gt\right)\)
BC : cạnh chung
\(\widehat{KBC}=\widehat{HCB}\text{ }\left(gt\right)\)
\(\Rightarrow\text{ }\Delta KBC=\Delta HCB\text{ }\left(ch\text{ - }gn\right)\)
\(\Rightarrow\text{ }BK=HC\)
Ta có :
\(AB=AK+BK\)
\(AC=AH+HC\)
Mà : \(AB=BC\text{ }\left(gt\right)\text{ ; }BK=HC\text{ }\left(gt\right)\)
\(\Rightarrow\text{ }AK=AH\)
\(\Rightarrow\text{ }\Delta AKH\) cân tại A \(\Rightarrow\text{ }\widehat{AKH}=\frac{180^o-\widehat{A}}{2}\text{ }\left(1\right)\)
\(\Rightarrow\text{ }\Delta ABC\) cân tại A \(\Rightarrow\text{ }\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\text{ }\left(2\right)\)
Từ ( 1 ) ( 2 ) \(\Rightarrow\text{ }\widehat{AKB}=\widehat{ABC}\) Mà hai góc này ở vị trí đồng vị \(\Rightarrow\text{ }KH\text{ }//\text{ }BC\)
Mà \(\widehat{B}=\widehat{C}\text{ }\left(gt\right)\) \(\Rightarrow\text{ }BCHK\)là hình thang cân
b, Dễ mà !
a) (ax - 3)(x2 + bx + 9) = x3 - 27
=> ax3 + abx2 + 9ax - 3x2 - 3bx - 27 = x3 - 27
=> ax3 + x2(ab - 3) - 3x(3a - b) = x3
=> \(\hept{\begin{cases}a=1\\ab-3=0\\3a-b=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=3\end{cases}}\)
b) (ax + b)(x2 - x + 1) - c(2x - 1) = x3 - 3x2 + x - 1
=> ax3 - ax2 + ax + bx2 - bx + b - 2cx + c = x3 - 3x2 + x - 1
=> ax3 - x2(a - b) + x(a - b + 2c) + (b - c) = x3 - 3x2 + x - 1
=> a = 3 ; \(\hept{\begin{cases}a-b=3\\a-b+2c=1\\b-c=1\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=0\\c=-1\end{cases}}\)
a) ( ax - 3 )( x2 + bx + 9 ) = x3 - 27
<=> ( ax - 3 )( x2 + bx + 9 ) = ( x - 3 )( x2 + 3x + 9 )
Đồng nhất hệ số ta được a = 1 ; b = 3
b) ( ax + b )( x2 - x + 1 ) - c( 2x - 1 ) = x3 - 3x2 + x - 1
<=> ax( x2 - x + 1 ) + b( x2 - x + 1 ) - 2cx + c = x3 - 3x2 + x - 1
<=> ax3 - ax2 + ax + bx2 - bx + b - 2cx + c = x3 - 3x2 + x - 1
<=> ax3 - ( a - b )x2 + ( a - b - 2c )x + ( b + c ) = x3 - 3x2 + x - 1
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a=1\\a-b=3\\a-b-2c=1\end{cases}};b+c=-1\)
=> a = 1 ; b = -2 ; c = 1
Gọi giao điểm của FI với BC là M . Góc EMF là góc ngoài đỉnh F của hai tam giác MBF và MIE , ta có :
\(\widehat{EMF}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)
\(\widehat{EMF}\)\(=\widehat{F_2}\)\(+\widehat{EIF}\)
Suy ra : \(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{F_1}\)\(+\widehat{MBF}\)\(\left(1\right)\)
Gọi giao điểm của EI với CD là N
Chứng minh tương tự , ta có :
\(\widehat{EIF}\)\(+\widehat{F_2}\)\(=\widehat{NDF}\)\(+\widehat{E_1}\)\(\left(2\right)\)\(...\)
Bài làm ;
\(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+3^3-\left(x^3+27x+9x^2+243\right)\)
\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243\)
\(=\left(x^3-x^3\right)+\left(9x^2-9x^2\right)+\left(27x-27x\right)+\left(27-243\right)\)
\(=-216\)
=> Giá trị của biểu thức không phụ thuộc vào biến x .
( 2x + 3 )( 4x2 - 6x - 9 ) - 2( 4x2 - 1 )
= 2x( 4x2 - 6x - 9 ) + 3( 4x2 - 6x - 9 ) - 8x2 + 2
= 8x3 - 12x2 - 18x + 12x2 - 18x - 27 - 8x2 + 2
= 8x3 - 8x2 - 36x - 25 ( có phụ thuộc vào biến )
( x + 3 )3 - ( x + 9 )( x2 + 27 )
= x3 + 9x2 + 27x + 27 - [ x( x2 + 27 ) + 9( x2 + 27 ) ]
= x3 + 9x2 + 27x + 27 - ( x3 + 27x + 9x2 + 243 )
= x3 + 9x2 + 27x + 27 - x3 - 27x - 9x2 - 243
= -216 ( đpcm )
Do \(1\le x< y\le2\Rightarrow\hept{\begin{cases}1\le x< 2\\\frac{1}{2}\le\frac{1}{y}< 1\end{cases}}\)
=> \(\frac{1}{2}\le\frac{x}{y}< 2\)
\(A=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{x}{y}+\frac{y}{x}+2\)
Đặt \(\frac{x}{y}=t\left(\frac{1}{2}\le t< 2\right)\)
Ta có: \(A=t+\frac{1}{t}+2=\left(t-\frac{1}{2}\right)+\left(\frac{1}{t}-2\right)+\frac{9}{2}=\frac{2t-1}{2}+\frac{1-2t}{t}+\frac{9}{2}\)
\(=\frac{\left(2t-1\right)\left(t-2\right)}{2t}+\frac{9}{2}\)
Vì \(\frac{1}{2}\le t< 2\Rightarrow\hept{\begin{cases}2t-1\ge0\\t-2< 0\end{cases}\Rightarrow\left(2t-1\right)\left(t-2\right)\le0}\)và \(2t\ge2.\frac{1}{2}=1\Rightarrow\frac{1}{2t}\le1\)
=> \(A\le\frac{9}{2}\)
"=" Xảy ra <=> \(t=\frac{1}{2}\)<=> \(\hept{\begin{cases}\frac{x}{y}=\frac{1}{2}\\x=1;\frac{1}{y}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
a. 4x2 - x + 10
= 4x2 - x + 1/16 + 159/16
= 4 ( x - 1/8 )2 + 159/16
Vì \(\left(x-\frac{1}{8}\right)^2\ge0\forall x\)=> \(4\left(x-\frac{1}{8}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
Dấu "=" xảy ra <=> \(4\left(x-\frac{1}{8}\right)^2=0\Leftrightarrow x-\frac{1}{8}=0\Leftrightarrow x=\frac{1}{8}\)
Vậy GTNN của bt trên = 159/16 <=> x = 1/8
b. 2x2 - 5x - 1
= 2x2 - 5x + 25/8 - 33/8
= 2 ( x - 5/4 )2 - 33/8
Vì \(\left(x-\frac{5}{4}\right)^2\ge0\forall x\)=> \(2\left(x-\frac{5}{4}\right)^2-\frac{33}{8}\ge-\frac{33}{8}\)
Dấu "=" xảy ra <=> \(2\left(x-\frac{5}{4}\right)^2=0\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)
Vậy GTNN của bt trên = - 33/8 <=> x = 5/4
4x2 - x + 10
= 4( x2 - 1/4x + 1/64 ) + 159/16
= 4( x - 1/8 )2 + 159/16 ≥ 159/16 ∀ x
Đẳng thức xảy ra <=> x - 1/8 = 0 => x = 1/8
Vậy GTNN của biểu thức = 159/16 <=> x = 1/8
2x2 - 5x - 1
= 2( x2 - 5/2x + 25/16 ) - 33/8
= 2( x - 5/4 )2 - 33/8 ≥ -33/8 ∀ x
Đẳng thức xảy ra <=> x - 5/4 = 0 => x = 5/4
Vậy GTNN của biểu thức = -33/8 <=> x = 5/4
a) x(y - x)3 + y(x - y)2 + xy(x - y)
= x(y - x).(y - x)2 + y(x - y)2 + xy(x - y)
= x(y - x)(x - y)2 + y(x - y)2 + xy(x - y)
= (x - y)[x(y - x)(x - y) + y(x - y) + xy]
= (x - y)[x(y - x)(x - y) + y(x - y) + xy]
b) 3a2x - 3a2y + abx - aby
= 3a2(x - y) + ab(x - y)
= a(x - y)(3a + b)
a) x( y - x )3 - y( x - y )2 + xy( x - y )
= -x( x - y )3 - y( x - y )2 + xy( x - y )
= ( x - y )[ -x( x - y )2 - y( x - y ) + xy ]
= ( x - y )[ -x( x2 - 2xy + y2 ) - yx + y2 + xy ]
= ( x - y )( -x3 + 2x2y - xy2 - yx + y2 + xy )
= ( x - y )( -x3 + 2x2y - xy2 + y2 )
b) 3a2x - 3a2y + abx - aby
= 3a2( x - y ) + ab( x - y )
= ( x - y )( 3a2 + ab )
= ( x - y )a( 3a + b )