cho các số nguyên dương a,b,c,d thỏa mãn ab=cd. chứng minh rằng A=an+bn+cn+dn là một hợp số với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+2y+1}\) =a thì phương trình trở thành a2 -1 +a =1 giải ra được a=1 hoặc a=-2
mà a > 0 suy ra a=1 suy ra x2 +2y =0 mà 2x + y =2 suy ra x2 - 4x -4 =0 suy ra x=2 y= -2
x02 + y02 = 8
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Đội sản xuất có số người là:10+8=18(người)
Vậy cả đội sản xuất đc số sản phẩm trong1 tuần là:56 nhân 18=1008(sản phẩm)
Tổ 2 sản xuất đc số sản phẩm trông 1 tuần là:1008-(52 nhân 10)=488(sản phẩm)
Vậy trung bình mỗi người của tổ 2 phải sản xuất số sản phẩm là:488:8=61(sản phẩm)
1. Gọi d là ước số chung của n+3 và 2n+5, d,n C N. Khi đó 2(n+3)-(2n+5) chia hết cho d hay 1 chia hết cho d, vậy d=1 hay 2 số n+3 và 2n+5 là 2 số nguyên tố cùng nhau
2. Nếu d là USC của n+1 và 2n+5 thì (2n+5)-2(n+1) chia hết cho d hay 3 chia hết cho d, vậy d=1 hoặc 3 do đó số 4 không thể là USC của 2 số n+1 và 2n+5
Ta có : \(\frac{9}{4}=\left(1+a\right)\left(1+b\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow\left(a+b+2\right)^2\ge9\Leftrightarrow a+b+2\ge3\Leftrightarrow a+b\ge1\)
Áp dụng BĐT Mincopxki , ta có : \(\sqrt{1+a^4}+\sqrt{1+b^4}\ge\sqrt{\left(1^2+1^2\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}\left(a+b\right)^4}\ge\sqrt{\frac{17}{4}}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
Vậy minP = \(\frac{\sqrt{17}}{2}\Leftrightarrow a=b=\frac{1}{2}\)
\(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)
\(\Leftrightarrow1+a+b+ab=\frac{9}{4}\Leftrightarrow a+b+ab=\frac{5}{4}\)
Áp dụng Bđt Cô si ta có: \(a^2+b^2\ge2ab\)
\(2\left(a^2+\frac{1}{4}\right)\ge2a;2\left(b^2+\frac{1}{4}\right)\ge2b\)
\(\Rightarrow3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)
Áp dụng Bđt Bunhiacopski ta cũng có:
\(P\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\frac{1}{4}}=\frac{\sqrt{17}}{2}\)
Dấu = khi \(x=y=\frac{1}{2}\)
1/ Vẽ hình ...
2/Bài làm như sau:
Bạn cần thêm điều kiện AB = AD .
Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông
Suy ra : SMNPQ=NQ22SMNPQ=NQ22
Mặt khác, ta luôn có : KQ+QN≥KNKQ+QN≥KN ⇒QN≥|KN−KQ|=12|c−a|⇒QN≥|KN−KQ|=12|c−a|
⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28⇒QN2≥(c−a)24⇒SMNPQ=QN22≥(c−a)28
Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD
XIN LỖI MÌNH GIẢI NHẦM
THEO ĐỀ TA CÓ,HIỆU CỦA TỬ VÀ MẪU LÀ:
24X2=48
TỬ LÀ:
(210-48);2=81
MẪU LÀ:
210-81=129
VẬY PHÂN SỐ CẦN TÌM LÀ:
\(\frac{81}{129}\)
Hai phân số mới có tổng bằng : \(\frac{3}{7}+\frac{4}{9}=\frac{55}{63}\)
Vậy phân số mới mà lớn hơn là: \(\frac{55}{63}\times\frac{5}{6}=\frac{275}{378}\)
Vậy phân số cần tìm là \(\frac{275}{378}-\frac{3}{7}=\frac{113}{378}\)
Lớp 6 khó vậy sao?
ab=cd (*)
a=b=c=d=1 => A=4=2.2 đúng
a=[c,d]
b=[c,d]
a,b,c,d, vai trò như nhau
g/s a=c; b=d
A=2a^2+2b^2 =2.(a^2+b^2) => A hợp số
với a,b,c,d >1, và a,b,c,d khác nhau
ta có
đảm bảo (*)
( không tồn tại ab=cd khác nhau mà nguyên tố)
g/s a và c có ước lớn nhất p
ta có a=x.p và c=y.p ( do p lớn nhất => (x,y)=1)(**)
từ ab=cd=> x.p.b=y.p.d
từ (**)=> b=y.q và d=x.q
thay hết vào A
A=x^n .p^n+y^n.q^n^n+y^n.p^n+x^n.q^n =x^n(p^n+q^n)+y^n(p^n+q^n)=(x^n+y^n)(p^n+q^n)
A=B.C --> dpcm
ko hiểu