Cho x-y=12 tính giá trị biểu thức
A=x3-y3-36xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)
Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)
=> \(4\ge xy+2\)=> \(2\ge xy\)
=> \(A=2016+xy\le2016+2=2018\)
=> Amin=2018
\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)
\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\times\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
ĐK : ...
\(=\left(\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right)\times\left(x^4+\frac{\left(1-x^2\right)\left(1+x^2\right)}{\left(1+x^2\right)}\right)\)
\(=\left(\frac{x^4-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right)\times\left(x^4+1-x^2\right)\)
\(=\left(\frac{x^4-1-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right)\times\left(x^4-x^2+1\right)\)
\(=\frac{x^2-2\left(x^4-x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)
\(=\frac{x^2-2}{x^2+1}\)
Mình sửa dòng 5 một chút nhé
\(=\frac{\left(x^2-2\right)\left(x^4-x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)( như kia dễ bị nhầm )
a/b+c + b/c+a + c/a+b = 1
=> (a+b+c)(a/b+c + b/c+a + c/a+b = (a+b+c).1
=> a2/ b+c + a + b2/c+a + b + c2/a+b + c = a+b+c
=> a2/b+c + b2/c+a + c2/a+b = (a+b+c)-(a+b+c) = 0
đúng thì k cho mình nka
ĐK:\(a+b+c\ne0\)
Khi đó:\(\frac{a}{a+b}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{\left(a+b+c\right)a}{c+b}+\frac{\left(a+b+c\right)b}{a+c}+\frac{\left(a+b+c\right)c}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
a) 2x( x - 7 ) - ( x + 3 )( x - 2 ) - ( x + 4 )( x - 4 )
= 2x2 - 14x - ( x2 + x - 6 ) - ( x2 - 16 )
= 2x2 - 14x - x2 - x + 6 - x2 + 16
= 22 - 15x
b) ( 2x + 5 )( x - 2 ) - 3( x + 2 )2 + ( x + 1 )2
= 2x2 + x - 10 - 3( x2 + 4x + 4 ) + x2 + 2x + 1
= 3x2 + 3x - 9 - 3x2 - 12x - 12
= -9x - 21
c) ( x + 3 )( x - 3 ) - ( x + 5 )( x - 1 ) - ( x - 4 )2
= x2 - 9 - ( x2 + 4x - 5 ) - ( x2 - 8x + 16 )
= x2 - 9 - x2 - 4x + 5 - x2 + 8x - 16
= -x2 + 4x - 20
d) 2x( x + 1 )2 - ( x - 1 )3 - ( x - 2 )( x2 + 2x + 4 )
= 2x( x2 + 2x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - ( x3 - 8 )
= 2x3 + 4x2 + 2x - x3 + 3x2 - 3x + 1 - x3 + 8
= 7x2 - x + 9
e) ( x + 5 )( x - 5 )( x + 2 ) - ( x + 2 )3
= ( x2 - 25 )( x + 2 ) - ( x3 + 6x2 + 12x + 8 )
= x3 + 2x2 - 25x - 50 - x3 - 6x2 - 12x - 8
= -4x2 - 37x - 58
Bài 1 :
Ta có : \(VP=\left(a+b\right)^4=\left(a+b\right)\left(a+b\right)^3\)
\(=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
=> HĐT ko đc CM
Bài 2 :
a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=x^3+2x^2+4x-2x^2-4x-8-x+1+7=x^3-x=x\left(x^2-1\right)\)
Sửa đề : b, \(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=8\left(x^3-1\right)-8x^3+1=8x^3-8-8x^3+1=-7\)
Xin phép chủ nahf cho mjnh sửa đề:D
\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
a,\(\left(a+b\right)^4\)
\(=\left[\left(a+b\right)^2\right]^2\)
\(=\left(a^2+2ab+b^2\right)^2\)
\(=\left[\left(a^2+2ab\right)+b^2\right]^2\)
\(=\left(a^2+2ab\right)^2+2\left(a^2+2ab\right)b^2+b^4\)
\(=a^4+4a^3b+4a^2b^2+2a^2b^2+4ab^3+b^4\)
\(=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)
Bài 2:
a,\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)
\(=\left(x^3-8\right)-\left(x-1\right)+7\)
b,\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x-1\right)\)
\(=8\left(x^3-1\right)-\left(8x^3-1\right)\)
\(=8x^3-8-8x^3+1\)
\(=-7\)
b, \(x^3+2x^2+2x+1=\left(x^2+x+1\right)\left(x+1\right)\)
c, \(x^3-4x^2+12x-27=\left(x^2-x+9\right)\left(x-3\right)\)
d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)
e, sai đề
a, \(\left(ab-1\right)^2+\left(a+b\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)
b, \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2+x+1\right)\)
c, \(x^3-4x^2+12x-27=\left(x-3\right)\left(x^2-x+9\right)\)
d, \(x^4-2x^3+2x-1=\left(x-1\right)^3\left(x+1\right)\)
e, cho mình sửa đề xíu
\(x^4+2x^3+2x^2+2x+1=\left(x+1\right)^2\left(x^2+1\right)\)
\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)
\(=\left[a.\left(a+b+c\right)+bc\right]\left[b.\left(a+b+c\right)+ac\right]\left[c.\left(a+b+c\right)+ab\right]\)
\(=\left(a^2+ab+ac+bc\right)\left(ba+b^2+bc+ac\right)\left(ca+cb+c^2+ab\right)\)
\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\left[\left(ca+c^2\right)\left(cb+ab\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(b+a\right)\right]\left[c\left(a+c\right)b\left(b+b\right)\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
\(\Rightarrowđpcm\)
\(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)\)
\(=\left[a\left(a+b+c\right)+bc\right]\left[b\left(a+b+c\right)+ac\right]\left[c\left(a+b+c\right)+ab\right]\)
\(=\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)\left(ac+bc+c^2+ab\right)\)
\(=\left[\left(a^2+ab\right)+\left(ac+bc\right)\right]\left[\left(ab+b^2\right)+\left(bc+ac\right)\right]\left[\left(ac+c^2\right)+\left(bc+ab\right)\right]\)
\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[c\left(a+c\right)+b\left(a+c\right)\right]\)
\(=\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
\(\Rightarrowđpcm\)
TA có: \(A=x^3-y^3-36xy=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]-36xy\)
\(=12.12^2+3.12xy-36xy=12^3\)