cho hình chữ nhật ABCD có M,N lần lượt là trung điểm AD,BC.Trên tia đối của tua DC lấy P rồi gọi Q là giao điểm PM với AC.Chứng minh NM là phân giác góc PNQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
This picture is _____ than a horse
A. more beautiful B. more beautifully
bn tự kẻ hình nha!
a) xét tg ABC
có: AD = BD, AE = EC
----> DE// BC // BF ( đường trung bình)
----> DE = 1/2.BC = BF
----> BDEF là h.b.h
b) xét tứ giác AHCK
có: HE = EK ; AE = EC
----> AHCK là h.b.h
mà ^AHC = 90o
---> AHCK là h.c.n
----> \(AK\perp AH⋮A\)(1)
cmtt; ta có: AIBH là h.c.n
----> \(AI\perp AH⋮A\)(2)
từ (1);(2) -----> I,A,K thẳng hàng
c) ta có: PQ là đường trung bình của hình thang HFED ( cm HFED là hình thang thì bn tự cm nha)
-----> \(PQ=\frac{DE+HF}{2}\Rightarrow4PQ=2DE+2HF\)(1)
lại có: DE là đường trung bình của tg HKI ( tự cm nha bn)
----> DE = 1/2. IK -----> 2.DE = IK (2)
từ (1),(2) ----> 4PQ = IK + 2HF
α π √ Ω ∽ ∞ Δ μ ∈ ∉ ∋ ⊂ ∩ ∪ ∀ ∃ ≤ ≥ ∝ ≈ ⊥ ± ∓ ° ωt + φ λ
Hình tự vẽ.
1) BDEF là hình bình hành.
Xét ΔABC có AD = DB (D là trung điểm), AE = EC (C là trung điểm)
=> DE là đường trung bình của ΔABC.
=> DE//BC, DE = 1/2 BC
Mặt khác, ta có: BF = 1/2BC (F là trung điểm của BC)
=> DE = BF mà DE//BC (cmt)
=> BDEF là hình bình hành (đpcm)
2) AHCK là hình chữ nhật. I, A, K thẳng hàng.
Xét tứ giác AHCK có:
AE = EC (E là trung điểm), EH = HK (K đối xứng với H qua E)
=> AHCK là hình bình hành.
Mà ^(AHC) = 90° (GT)
=> AHCK là hình chữ nhật (đpcm)
=> ^(HAK) = 90°
Mặt khác, ta xét tương tự tứ giác BHAI có:
AD = BD (D là trung điểm), DI = DH (I đối xứng với H qua D)
=>BHAI là hình bình hành, mà ^(AHB) = 90°
=> AHBI là hình chữ nhật,
=> ^(IAH) = 90°
=> ^(IAK) = ^(AIH) + ^(HAK) = 90° + 90° = 180°
=> I, A, K cùng nằm trên một đường thẳng
Hay I, A, K thẳng hàng.
3)
Xét ΔIKH có: HD = DI (I đối xứng H qua D), HE = EK (K đối xứng H qua E)
=> DE là đường trung bình của ΔIHK.
=> DE = 1/2IK hay IK = 2DE
Ta có: DE//BC (cmt) => DEFH là hình thang.
Xét hình thang DEFH có: DP = PH (P là trung điểm), QE = QF (Q là trung điểm)
=> PQ là đường trung bình của hình thang DEFH.
=> PQ = (DE + FH)/2
Quy đồng vế phải, ta được: PQ = 2DE + 2FH / 4 (IK = 2DE)
=> 4PQ = IK + 2HF (đpcm)
( x + 3 )( x2 - 3x + 9 ) + ( 7 - x )( 7 + x ) + x( x - x2 )
= x3 + 27 + 49 - x2 + x2 - x3
= 76
xét tam giác EDA và tam giác CBA có
DA=AB(gt)
EA=AC(gt)
góc DAE=góc BAC( đđ)
=> tam giác EDA= tam giác CBA(cgc)
=> ABC=ADE( hai góc t/ứ) mà ABC so le trong với ADE=> ED//BC=> ID//BK mà ID=BK
=> IDKB là hbh=> DB giao IK tại trung điểm mỗi cạnh mà A là trung điểm BD=> A là trung điểm IK=> I đối xứng K qua A
Bài 1. Dùng định lí Bézoute
1) Đặt f(x) = x3 + x2 + x + a
f(x) chia hết cho x + 1 <=> f(-1) = 0
=> -1 + 1 - 1 + a = 0
=> a - 1 = 0
=> a = 1
2) Đặt f(x) = 2x3 - 3x2 + x + a
f(x) chia hết cho x + 2 <=> f(-2) = 0
=> a - 30 = 0
=> a = 30
3) Đặt f(x) = x3 - 2x2 + 5x + a
f(x) chia hết cho x - 3 <=> f(3) = 0
=> a + 24 = 0
=> a = -24
4) Đặt f(x) = x4 - 5x2 + a
Ta có x2 - 3x + 2 = x2 - x - 2x + 2 = x( x - 1 ) - 2( x - 1 ) = ( x - 1 )( x - 2 )
f(x) chia hết cho x2 - 3x + 2 <=> \(\hept{\begin{cases}x^4-5x^2+a⋮x-1\left(1\right)\\x^4-5x^2+a⋮x-2\left(2\right)\end{cases}}\)
(1) : f(x) chia hết cho x - 1 <=> f(1) = 0 => a = 0
(2) : f(x) chia hết cho x - 2 <=> f(2) = 0 => a - 4 = 0 => a = 4
Vậy a = 0 hoặc a = 4
Bài 2.
1) x2 - 8x + 20 = ( x2 - 8x + 16 ) + 4 = ( x - 4 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
2) 4x2 - 12x + 11 = ( 4x2 - 12x + 9 ) + 2 = ( 2x - 3 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
3) x2 - 2x + y2 + 4y + 6 = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1 = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 ∀ x, y
Bài 3.
A = x2 - 20x + 101 = ( x2 - 20x + 100 ) + 1 = ( x - 10 )2 + 1 ≥ 1 ∀ x
Dấu "=" xảy ra khi x = 10
=> MinA = 1 <=> x = 10
B = 2x2 + 40x - 1 = 2( x2 + 20x + 100 ) - 201 = 2( x + 10 )2 - 201 ≥ -51 ∀ x
Dấu "=" xảy ra khi x = -10
=> MinB = -201 <=> x = -10
Bài 4.
C = 4x - x2 + 3 = -( x2 - 4x + 4 ) + 7 = -( x - 2 )2 + 7 ≤ 7 ∀ x
Dấu "=" xảy ra khi x = 2
=> MaxC = 7 <=> x = 2
D = 11 - 10x - x2 = -( x2 + 10x + 25 ) + 36 = -( x + 5 )2 + 36 ≤ 36 ∀ x
Dấu "=" xảy ra khi x = -5
=> MaxD = 36 <=> x = -5
Bài kia tí làm nốt ;-;
Bạn xem ở đây ạ!
Cho hình chữ nhật ABCD. M;N là trung điểm của AD;BC Trên tia đối của tia DC lấy P. PM cắt AC tại Q. Cm: MN là tia phân giác của góc PNQ. - Hình học - Diễn đàn Toán học