Cho biết x và y là 2 đại lượng tỉ lệ thuận, x1 và x2 là 2 giá trị khác nhau của x, y1 và y2 là 2 giá trị tương ứng của y. Tính x2 và y2 biết x2+y2=10; x1=2; y1=3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H K I ︵ ︵
a, Vì AM là tia phân giác của BAC
=> BAM = MAC = BAC/2
Xét △AMB và △AMC
Có: AB = AC (gt)
BAM = MAC (gt)
AM là cạnh chung
=> △AMB = △AMC (c.g.c)
b, Xét △AHM vuông tại H và △AKM vuông tại K
Có: AM là cạnh chung
HAM = KAM (gt)
=> △AHM = △AKM (gh-gn)
=> AH = AK (2 cạnh tương ứng)
c, Gọi {I} =HK ∩ AC
Xét △AIH và △AIK
Có: AH = AK (cmt)
HAI = IAK (gt)
AI là cạnh chung
=> △AIH = △AIK (c.g.c)
=> AIH = AIK (2 góc tương ứng)
Mà AIH + AIK = 180o (2 góc kề bù)
=> AIH = AIK = 180o : 2 = 90o
=> AI ⊥ HK
Mà {I} =HK ∩ AC
=> AC ⊥ HK (đpcm)
a, Xét △ABH vuông tại H và △ACH vuông tại H
Có: AB = AC (gt)
AH là cạnh chung
=> △ABH = △ACH (ch-cgv)
=> HB = HC (2 cạnh tương ứng) và BAH = CAH (2 góc tương ứng)
b, Ta có: BH + HC = BC => BH + HC = 6 (cm)
Mà HB = HC (cmt)
=> HB = HC = 6 : 2 = 3 (cm)
Xét △BAH vuông tại H
Có: AH2 + HB2 = AB2 (định lý Pytago)
=> AH2 = AB2 - HB2
=> AH2 = 42 - 32
=> AH2 = 16 - 9
=> AH2 = 7
=> AH = √ 7 (cm)
c, Vì △ABC có: AB = AC (gt) => △ABC cân tại A => ABC = ACB
Xét △BHM vuông tại M và △CHN vuông tại N
Có: BH = HC (cmt)
MBH = NCH (cmt)
=> △BHM = △CHN (ch-gn)
=> MH = NH (2 cạnh tương ứng)
Xét △MNH có: MH = NH (cmt) => △MNH cân tại H
Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên
\(\left(m-1\right)\left(m+1\right)⋮3\)(1)
m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)
Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8
Vậy (m-1)(m+1) chia hết cho 24
B A C x y z 1 2
Kẻ Bz // Az// Cy
Ta có: A+B+C=360 => A+B1=180; C+B2=180.
=> Ax//Cy
A = (1 + 1/4) + (1 + 1/9) + (1 + 1/16) + ... + (1 + 1/2500) (có 49 tổng)
= 49 + 1/(2^2) + 1/(3)^2 + ... + 1/(50)^2
nhỏ hơn: 49 + 1/1.2 + 1/2.3 + ... + 1/49.50 = 49 + 1 - 1/50 = 50 - 1/50 nhỏ hơn 50
mà A lớn hơn 49
=> A không là số nguyên
Học Tốt !
A B C D x
Cx//AB nên ta có
\(\widehat{BCx}=\widehat{B}\) (góc so le trong)
\(\widehat{DCx}=\widehat{A}\) (góc đồng vị)
Mà \(\widehat{A}=\widehat{B}\) (giả thiết)
\(\Rightarrow\widehat{BCx}=\widehat{DCx}\) => Cx là phân giác \(\widehat{DCB}\)