K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2023

  vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv⚽☺

1 tháng 11 2023

tttuuuu==+0__$$$TTT❤

19 tháng 10 2023

\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)

\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)

\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)

\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)

Ta có

\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)

\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)

Thay (1) vào (2)

\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)

Do \(a>b>c>d\)

\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)

\(\Leftrightarrow ab+cd>ac+bd\) (4)

Và 

\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)

\(\Leftrightarrow ac+bd>ad+bc\) (5)

Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\) 

Ta có

(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)

Vế trái là số nguyên => vế phải cũng phải là số nguyên

Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)

\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd

=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố

18 tháng 10 2023

mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà

 

10 tháng 10 2023

vãi

12 tháng 10 2023

Mày gửi cái gì vậy

8 tháng 10 2023

Từ dữ kiện thứ hai, ta thấy 4 số có cùng số dư khi chia cho 3 nên tổng nhỏ nhất là \(1+7+13+19=40\) (giữ lại đáp án ban đầu nhé)

8 tháng 10 2023

 Từ dữ kiện thứ nhất ta thấy hoặc cả 4 số đều lẻ, hoặc cả 4 số đều chẵn.

 Từ dữ kiện thứ 2 ta thấy cả 4 số đều phải chia hết cho 3.

 Suy ra tổng nhỏ nhất của 4 số là \(1+7+13+19=40\)

8 tháng 10 2023

:}

8 tháng 10 2023

hog bic lm=))

15 tháng 9 2023

Có vẻ như là đề hơi sai á bạn. Bạn xem lại đề nha.

15 tháng 9 2023

a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

\(\Rightarrow2ab\text{=}2bc+2ca\)

\(\Rightarrow2ab-2bc-2ca\text{=}0\)

Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)

\(\text{=}a^2+b^2+c^2\)

Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)

\(\Rightarrow A\text{=}a+b-c\)

Vì a;b;c là các số hữu tỉ suy ra : đpcm

b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)

Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)

Từ đây ta thấy giống phần a nên :

\(B\text{=}a+b-c\)

\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)

Suy ra : đpcm.

Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.

9 tháng 9 2023

 Số đã cho được viết là N = 111...11 (81 chữ số 1)

\(N=10^{80}+10^{79}+...+10^1+10^0\)

\(\Rightarrow10N=10^{81}+10^{80}+...+10^2+10^1\)

\(\Rightarrow9N=10^{81}-1\)

\(\Rightarrow N=\dfrac{10^{81}-1}{9}\)

 Ta chứng minh \(\dfrac{10^{81}-1}{9}⋮81=3^4\) hay \(10^{81}-1⋮3^6\)

 Kí hiệu \(v_p\left(n\right)\) là số mũ đúng của số nguyên tố p trong phân tích tiêu chuẩn của n.

Sử dụng định lý LTE, ta có:

 \(v_3\left(10^{81}-1\right)=v_3\left(10-1\right)+v_3\left(81\right)\) \(=2+4=6\)

 Do đó \(10^{81}-1⋮3^6\), ta có đpcm.

 (Bạn có thể tìm hiểu thêm về định lý LTE trên mạng nhưng bạn sẽ không được dùng nó vào chương trình lớp 6 đâu. Bạn có thể cm điều này bằng cách phân tích \(10^{81}-1\) thành tích của các số nhưng sẽ hơi lâu.)

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

Lời giải:

Ta có:

\(\underbrace{111....1}_{81}=\underbrace{11...1}_{9}\times 10^{72}+\underbrace{11...1}_{9}\times 10^{63}+\underbrace{111...1}_{9}\times 10^{54}+....+\underbrace{11...1}_{9}\times 10^0\)

\(=\underbrace{111....1}_{9}(10^{72}+10^{63}+...+10^0)\)

\(=\underbrace{111...1}_{9}\times 1\underbrace{0...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\underbrace{00...0}_{8}1\)

Ta thấy thừa số thứ nhất chia hết cho 9 (do tổng các chữ số bằng 9). Thừa số thứ 2 cũng chia hết cho 9 (do tổng các chữ số chia hết cho 9)

Do đó tích 2 thừa số trên chia hết cho $9.9=81$

Ta có điều phải chứng minh.

6 tháng 9 2023

Cảm ơn em nhé, những chia sẻ kiến thức của em rất bổ ích, sẽ có giá trị với nhiều người. Mong em sẽ có nhiều đóng góp tích cực cho olm em nhá.  

6 tháng 9 2023

Nhận ngay giải thưởng 1 coin khi góp ý cho mình tỏng các part sau nhé và có thể bổ sung thêm các tips học toán