K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Cặp góc so le trong là:}\)

\(A_3\text{ và }B_1\)

\(A_4\text{ và }B_2\)

\(\text{Cặp góc đồng vị là:}\)

\(A_2\text{ và }B_2\)

\(A_3\text{ và }B_3\)

\(A_1\text{ và }B_1\)

\(A_4\text{ và }B_4\)

7 tháng 4 2022
Rủ rỉ Xg từ đó fb tí gì
8 tháng 4 2017

a)xét 2 tam giác BAD và tam giác BHD ( góc A = góc H = 90 độ )

ta có cạnh huyền BD chung 

           góc ABD = góc HBD ( vì BD là phân giác góc B )

=> tam giác BAD = BHD ( cạnh huyền - góc nhọn )

<=> BA = BH ( 2 cạnh tương ứng )

: kéo dài EK cắt đường thẳng vuông góc với AB kẻ từ B tại Q 

- chứng minh được AB = AE = BQ ( theo phần a ) ta có BA = BH => BH = BQ 

tam giác BHK = tam giác BQK ( cạnh huyền - góc vuông )

góc HBK = QBK  ( theo phần a ) ta có góc ABD = DBH 

góc DBK = 1/2 góc ABD . Mà góc ABD = 90 độ 

góc DBK = 45 độ (đpcm)

              MK LM RỒI NHÁ NHỚ K VÀ ĐỂ \(AVATAR\)MỘT TUẦN ĐẤY NHÉ ^^ TKS BN

3 tháng 1 2018

A C B D H E K F

a) Xét tam giác BAD và BHD có:

\(\widehat{BAD}=\widehat{BHD}=90^o\)

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

\(\Rightarrow\Delta BAD=\Delta BHD\)  (Cạnh huyền - góc nhọn)

Vậy nên BA = BH (Hai cạnh tương ứng)

b) Kẻ tia Bx vuông góc BA, cắt tia EK tại F.

Ta có ngay BA = AE = BF nên BH = BF.

Từ đó suy ra \(\Delta BHK=\Delta BFK\)  (Cạnh huyền - cạnh góc vuông)

Khi đó ta có: \(\widehat{HBK}=\widehat{FBK}\)

Mà \(\widehat{ABD}=\widehat{HBD}\) nên \(\widehat{DBK}=\widehat{DBH}+\widehat{HBK}=\frac{\widehat{ABF}}{2}=45^o\)

c) Ta có do các cặp tam giác bằng nhau (cma, cmb) nên DH = DA ; HK = KF

Vậy thì \(P_{DKE}=DE+DK+DK=DE+DK+DH+HK\)

\(=DE+DA+KE+KF=AE+EF=2AB=8\left(cm\right)\)

16 tháng 5 2017

Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [C, A] Đoạn thẳng k: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [E, D] Đoạn thẳng n: Đoạn thẳng [E, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng s: Đoạn thẳng [M, I] Đoạn thẳng t: Đoạn thẳng [M, J] A = (0.26, 6.08) A = (0.26, 6.08) A = (0.26, 6.08) B = (-1.78, 1.2) B = (-1.78, 1.2) B = (-1.78, 1.2) C = (5.58, 1.02) C = (5.58, 1.02) C = (5.58, 1.02) Điểm M: Trung điểm của g Điểm M: Trung điểm của g Điểm M: Trung điểm của g Điểm E: Giao điểm của i, l Điểm E: Giao điểm của i, l Điểm E: Giao điểm của i, l Điểm D: Giao điểm của j, l Điểm D: Giao điểm của j, l Điểm D: Giao điểm của j, l Điểm K: Giao điểm của f, n Điểm K: Giao điểm của f, n Điểm K: Giao điểm của f, n Điểm H: Giao điểm của h, p Điểm H: Giao điểm của h, p Điểm H: Giao điểm của h, p Điểm I: Giao điểm của q, f Điểm I: Giao điểm của q, f Điểm I: Giao điểm của q, f Điểm J: Giao điểm của r, h Điểm J: Giao điểm của r, h Điểm J: Giao điểm của r, h

Kẻ \(MI⊥AB,MJ⊥AC\)

Ta thấy \(\widehat{EAK}=\widehat{AMI}\) (Cùng phụ với \(\widehat{KAM}\))

Vậy nên \(\Delta EAK\sim\Delta AMI\left(g-g\right)\Rightarrow\frac{EA}{AM}=\frac{AK}{MI}=2.\frac{AK}{KC}\)

Tương tự : \(\Delta DAH\sim\Delta AMJ\left(g-g\right)\Rightarrow\frac{DA}{AM}=\frac{AH}{MJ}=2.\frac{AH}{BH}\)

Mà \(\Delta AHB\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{HB}{KC}\Rightarrow\frac{AH}{HB}=\frac{AK}{KC}\)

Vậy thì \(\frac{AE}{AM}=\frac{DE}{AM}\Rightarrow AE=ED.\)

Tam giác DEM có MA là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại M.

DD
8 tháng 3 2022

Ba số nguyên tố có tổng là \(38\)là một số chẵn nên trong ba số đó có số \(2\).

Tổng hai số còn lại là \(36\).

Gọi hai số đó là \(a,b\).

Ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=36^2-2ab\)

Để \(\left(a^2+b^2\right)_{max}\)thì \(ab\)đạt min. 

Nếu \(a=b\)thì \(a=b=18\)không là số nguyên tố.

Không mất tính tổng quát, giả sử \(a>b>0\) 

Ta có nhận xét rằng \(a-b\)càng lớn thì \(ab\)càng nhỏ. 

Thật vậy, nếu ta thay \(a\)bằng \(a+1\)và \(b\)bằng \(b-1\)thì: 

\(\left(a+1\right)\left(b-1\right)=ab-a+b-1=ab-\left(a-b\right)-1< ab\)

Do đó để thỏa mãn ycbt thì ta cần tìm hai số nguyên tố \(a,b\)sao cho \(a+b=36\)và \(b\)nhỏ nhất. 

Với \(b=3\Rightarrow a=33\)loại. 

Với \(b=5\Rightarrow a=31\)(thỏa mãn) 

Vậy ba số nguyên tố thỏa mãn ycbt là \(2,5,31\).

Khi đó tổng bình phương lớn nhất là: \(2^2+5^2+31^2=990\).

8 tháng 3 2022

=990 nha ht

Giả sử n2+9n+24 chia hết cho 25

=> (n+3)2+15 chia hết cho 5

=> n+3 chia hết cho 5

=> (n+3)2 chia hết cho 25

=> (n+3)2+15 không chia hết cho 25 ( Vô lý)

=> giả sử sai 

=> đccm

7 tháng 3 2022

Giả sử \(n^2+9n+24⋮25\)\(\Rightarrow n^2+9n+24⋮5\)(1)

Ta có \(n^2+9n+24\)\(=n^2+2n+7n+14+10\)\(=n\left(n+2\right)+7\left(n+2\right)+10\)\(=\left(n+2\right)\left(n+7\right)+10\)(2)

Từ (1) và (2)\(\Rightarrow\left(n+2\right)\left(n+7\right)+10⋮5\)

Mà \(10⋮5\)nên \(\left(n+2\right)\left(n+7\right)⋮5\), mà 5 là số nguyên tố nên 1 trong 2 số \(n+2;n+7\)chia hết cho 5

Khi \(n+2⋮5\)thì \(n+2+5⋮5\)hay \(n+7⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)

Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)

Khi \(n+7⋮5\)thì \(n+7-5⋮5\)hay \(n+2⋮5\)\(\Rightarrow\left(n+2\right)\left(n+7\right)⋮25\)

Lại có \(\left(n+2\right)\left(n+7\right)+10⋮25\)(giả sử) nên \(10⋮25\)(vô lí)

Vậy điều giả sử sai \(\Rightarrow n^2+9n+24⋮̸25\)

3 tháng 6 2015

Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999

+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự

trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau

=>Mỗi  Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần

+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần

riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)

Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần

+) từ 2000 đến 2013 có:

S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)

= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83

Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083

3 tháng 6 2015

Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999

+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự

trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau

=>Mỗi  Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần

+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần

riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)

Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần

+) từ 2000 đến 2013 có:

S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)

= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83

Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083 **** ☺

24 tháng 3 2017

Bài 1:

\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+1986}\right)\)

Nhận xét: \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó: \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+1986}\right)\)

\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{1985\cdot1988}{1986\cdot1987}=\frac{1\cdot4\cdot1988}{1986\cdot3}=\frac{3976}{2979}\)

Bài 2:

\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)

\(\Rightarrow\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=2^x\)\(\Rightarrow\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^x\)

\(\Rightarrow\frac{\left(2^2\right)^6}{3^6}\cdot\frac{\left(2\cdot3\right)^6}{2^6}=2^x\)\(\Rightarrow\frac{2^{12}}{3^6}\cdot\frac{2^6\cdot3^6}{2^6}=2^x\)

\(\Rightarrow\frac{2^6\cdot3^6\cdot2^{12}}{2^6\cdot3^6}=2^x\)\(\Rightarrow2^{12}=2^x\Rightarrow x=12\)

25 tháng 3 2017

đúng rồi đó bạn ks bạn ý đi chứ

10 tháng 6 2016

Cho a,b,c là ba số dương thoả mãn \(0\le a\le b\le c\le1\)

Chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

Giải : 

Từ giả thiết ta có : \(\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(b+c\right)+bc\ge0\Rightarrow bc+1\ge b+c\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)

Tương tự ta cũng có : \(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\) ; \(\frac{c}{ab+1}\le c\le1\left(3\right)\)

Cộng (1) , (2) , (3) theo vế ta được : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)

Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)

20 tháng 6 2016

ta có : a<= 1 => a-1<=0 

          b<=1 => b-1<=0  

=> (b-1)(a-1) >= 0 => ab-a-b+1 >=0 => ab+1>=a+b => 2ab+1>= a+b ( vì ab>=0) 

=> 2ab+1+1>= a+b+c  ( vì 1>= c) 

2ab+2>=a+b+c => 1/2ab+2<=1/a+b+c c/ab+1<= 2c/a+b+c

chứng minh tương tự ta có b/ac+1 <= 2b/a+b+c ;   a/bc+1<= 2a/a+b+c 

=> a/bc+1+b/ac+1 + c/ab+c <= 2a+2b+2c / a+b+c = 2 ( đpcm )

6 tháng 3 2017

A B C E D F

Trên nửa mặt phẳng chứa điểm C có bờ là AB vẽ tam giác AFB đều, AF cắt BD tại E

Tam giác ABC vuông cân tại A <=> AB=AC (1)

Tam giác AFB đều <=> AF=AB=BF (2)

Từ (1) và (2) => AF=AC 

Góc ADC+góc DAC+góc ACD=180o (tổng 3 góc trong tam giác) <=> 150o+góc DAC+góc ACD=180o

<=>góc DAC+góc ACD=30o mà tam giác ADC cân tại D nên góc DAC=góc ACD <=> góc DAC+góc ACD=15o(3)

Tam giác AFB đều nên góc BAF=góc ABF=góc AFB=60o

Góc ABC=góc BAF+góc FAD+góc DAC=60o+góc FAD+15o=90o <=> góc FAD=15o (4)

Từ (3) và (4) => góc FAD=góc DAC

\(\Delta FAD=\Delta CAD\left(c.g.c\right)\) do có: AF=AC (cmt); góc FAD=góc DAC (cmt); AD chung

=>DF=DC (2 cạnh tương ứng). Mặt khác tam giác ADC cân tại D <=> AD=DC

=>AD=DF

Ta có: AB=BF và AD=DF => BD là đường trung trực của AF => góc AED=90o

Góc EAD+góc AED+góc ADE=180o(tổng 3 góc trong tam giác) <=> 15o+90o+góc ADE=180o<=>góc ADE=75o

hay góc ADB=75o

6 tháng 3 2017

B A C D E F

Trên nửa mặt phẳng chứa điểm C có bờ là AB vẽ tam giác AFB đều , AF cắt BD tại E .

Tam giác ABC vuông cân tại A <=> AB = AC ( 1 )

Tam giác AFB đều <=> AF = AB = BF ( 2 )

Từ ( 1 ) và ( 2 ) => AF = AC 

Góc ADC + góc DAC + góc ACD = 180o ( tổng 3 góc trong tam giác <=> 150o + góc DAC + góc ACD = 180o 

<=> Góc DAC + góc ACD = 30o mà tam giác ADC cân tại D nên góc DAC = góc ACD <=> góc DAC + góc ACD = 15o ( 3 )

Tam giác AFB đều nên góc BAF = góc ABF = góc AFB = 60o 

Góc ABC = góc BAF + góc FAD + góc DAC = 60o + góc FAD + 15o = 90o <=> góc FAD = 15o ( 4 )

Từ ( 3 ) và ( 4 ) => góc FAD = góc DAC 

Tam giác FAD = tam giác CAD do đó : AF=AC ; góc FAD = góc DAC ; AD chung 

=> DF = DC ( 2 cạnh tương ứng ) . Mặt khác tam giác ADC cân tại D <=> AD = DC 

=> AD = DF 

Ta có : AB = BF và AD = DF => BD là đường trung trực của AF => góc AED = 90o 

Góc EAD + góc AED + góc ADE = 180o ( tổng 3 góc trong tam giác ) <=> 15 + 90 o + góc ADE = 180 o <=> góc ADE = 75o hay ADB = 75o 

12 tháng 7 2017

A M B C

a. Xét  \(\Delta AMB\)và \(\Delta AMC\)

có \(\hept{\begin{cases}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AMchung\end{cases}}\)(do AD là phân giác)\(\Rightarrow\Delta AMB=\Delta AMC\left(c-g-c\right)\)

\(\Rightarrow MB=MC\)

b. Xét \(\Delta MBD\)và \(\Delta MCD\)

có \(\hept{\begin{cases}BD=CD\\MDchung\\MB=MC\end{cases}}\)\(\Rightarrow\Delta MBD=\Delta MCD\left(c-c-c\right)\)

13 tháng 11 2021

Qua de con kheu