Phâp thức đa thức thành nhân tử
a, x^2.y^3-1/2.x^4.y^8
b, a^2.b^4+a^3.b-abc
c, 7x(y-4)^2-(y-4)^3
d, -x^2.y^2.z-6x^3.y-8x^4.z^2-x^2.y^2.z^2
e, x^3-4x^2+x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : n2 + n + 1
= n2 + 2n - n - 2 + 3
= n ( n + 2 ) - ( n + 2 ) + 3
= ( n - 1 ) ( n + 2 ) + 3
Vì ( n - 1 ) ( n + 2 )\(⋮\)n + 2 nên 3\(⋮\)n + 2
=> n + 2\(\in\){ \(\pm\)1 ; \(\pm\)3 }
=> n\(\in\){ - 5 ; - 3 ; - 1 ; 1 } ( tm n\(\in\)Z )
\(=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)=\left(2-1\right)\left(2+1\right)...\left(2^{256}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)=\left(2^4-1\right)...\left(2^{256}+1\right)=....=2^{512}-1\)
A= (2-1) (2+1) (22+1) ........ + 1
= (22-1)(22+1) ......... (2256+1)
= (24-1) (24+ 1) ......... (2256+1)
................
= [(2256)2 –1] + 1
= 2512
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
Make questions to the underlines works:
We went to school by bus.
--> Are they going to school by car?
Where does he live?
-> What!You don't know where I live!
Câu cuối chế
cau a : (3x^2y-6xy+9x)(-4/3xy)
=-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x
=-4x+8-8y
cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)
=(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3
=(1/3)^3 + (2y)^3x-2
cau c : (x-2)(x^2-5x+1)+x(x^2+11)
=x^3-5x^2+x-2x^2+10x-2+x^3+11x
=2x^3-7x^2+22x-2
cau d := x^3 + 6xy^2 -27y^3
cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y
cau f := x^2-2x+2x -4-2x-1
= x(x-2)-5
\(ĐK:x\ge0\)
\(y=x-4\sqrt{x}-1=\left(\sqrt{x}\right)^2-4\sqrt{x}+4-5=\left(\sqrt{x}-2\right)^2-5\ge-5\)
Đẳng thức xảy ra khi x = 4
ĐKXĐ : \(x\ge0\)
Ta có :
\(y=x-4\sqrt{x}-1\)
\(\Leftrightarrow y=x-2.2\sqrt{x}+4-5\)
\(\Leftrightarrow y=\left(\sqrt{x}-2\right)^2-5\ge-5\)
Dấu bằng xảy ra
\(\Leftrightarrow\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
Vậy giá trị nhỏ nhất của biểu thức y = -5 \(\Leftrightarrow x=4\)
P.s cái đề b/s thêm n nguyên
Xét \(n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right).\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)
Do (n-2)(n-1)n(n+1)(n+2) là tích của 5 số nguyên liên tiếp => chia hết cho 40
Lại có n lẻ => (n-1)(n+1) là tích của 2 số chẵn liên tiếp nên chia hết cho 8
=>5(n-1)n(n+1) chia hết cho 40
\(\Rightarrow n\left(n^4-1\right)⋮40\Leftrightarrow n^4-1⋮40\)(Vì n lẻ, n không chia hết cho 5)
DO N KHÔNG CHIA HẾT CHO 5 MÀ SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0 , 1 , 4
=> n^2 CHIA 5 DƯ 1 HOẶC 4
=> n^4 CHIA 5 DƯ 1 => n^4 - 1 chia hết cho 5
DO N LÀ SỐ LẺ MÀ SỐ CHÍNH PHƯƠNG CHIA 8 DƯ 0,1 HOẶC 4
=> n^2 chia 5 dư 1 hoặc 4
=> n^4 chia 8 dư 1
=> n^4 chia hết cho 8
Mà 5 và 8 nguyên tố cùng nhau
=> n^4 - 1 chia hết cho 40
a) x2y3 - 1/2x4y8 = x2y3( 1 - 1/2x2y5 )
b) a2b4 + a3b - abc = ab( ab3 + a2 - c )
c) 7x( y - 4 )2 - ( y - 4 )3 = ( y - 4 )2( 7x - y + 4 )
d) -x2y2z - 6x3y - 8x4z2 - x2y2z2 = -x2( y2z + 6xy + 8x2z2 + y2z2 )
e) x3 - 4x2 + x = x( x2 - 4x + 1 )