Tìm x :
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1\)
BĐT cần chứng minh tương đương với \(\frac{\frac{1}{c^3}}{\frac{1}{a^2}+\frac{1}{b^2}}+\frac{\frac{1}{b^3}}{\frac{1}{a^2}+\frac{1}{c^2}}+\frac{\frac{1}{a^3}}{\frac{1}{b^2}+\frac{1}{c^2}}\geq \frac{\sqrt{3}}{2}\)
Đặt \((\frac{1}{a},\frac{1}{b},\frac{1}{c})=(x,y,z)\). Bài toán trở thành:
Cho \(x,y,z>0|x^2+y^2+z^2\geq 1\). CMR \(P=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\geq \frac{\sqrt{3}}{2}\)
Lời giải:
Áp dụng BĐT Cauchy -Schwarz:
\(P=\frac{x^4}{xy^2+xz^2}+\frac{y^4}{yz^2+yx^2}+\frac{z^4}{zx^2+zy^2}\geq \frac{(x^2+y^2+^2)^2}{x^2(y+z)+y^2(x+z)+z^2(x+y)}\) (1)
Không mất tính tổng quát, giả sử \(x\geq y\geq z\Rightarrow x^2\geq y^2\geq z^2\)
Và \(y+z\leq z+x\leq x+y\). Khi đó, áp dụng BĐT Chebyshev:
\(3[x^2(y+z)+y^2(x+z)+z^2(x+y)]\leq (x^2+y^2+z^2)(y+z+x+z+x+y)\)
\(\Leftrightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)(x+y+z)}{3}\)
Theo hệ quả của BĐT Am-Gm thì: \((x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}\)
\(\Rightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}{3}\) (2)
Từ (1),(2) suy ra \(P\geq \frac{3(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{3(x^2+y^2+z^2)}}{2}\geq \frac{\sqrt{3}}{2}\)
Ta có đpcm
Dáu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow a=b=c=\sqrt{3}\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)
Khi đó giả thiết được viết lại là \(x^2+y^2+z^2\ge1\)và ta cần chứng minh \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{\sqrt{3}}{2}\)(*)
Áp dụng BĐT Bunhiacopxki dạng phân thức, ta được:
\(VT_{\left(^∗\right)}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(z^2+x^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\)
Đến đây ta đi chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\ge\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\)\(\ge\sqrt{3}\left[x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)\right]\)
Ta có: \(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\)\(\le\frac{1}{\sqrt{2}}\sqrt{\left(\frac{2x^2+y^2+z^2+y^2+z^2}{3}\right)^3}\)
\(=\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Tương tự ta có: \(y\left(z^2+x^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
\(z\left(x^2+y^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le\frac{2\sqrt{3}}{3}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
\(\Leftrightarrow\sqrt{3}\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Cuối cùng ta cần chứng minh được
\(2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\le2\left(x^2+y^2+z^2\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge1\)(đúng)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}\)
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
Xét tam giác \(ABC\)vuông tại \(A\): \(AB^2=HB.BC\Rightarrow HB=\frac{AB^2}{BC}\).
\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}\)
Suy ra \(\frac{HB}{HC}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2=\frac{9}{25}\)
Bài này dễ mà bn lớp 5 còn làm đc :) e xin lỗi tí chứ e hc bài này òi :)
Vì khúc gỗ trôi tự do với vận tốc dòng nưosc là 2 giờ 15 phút
Ta có :
=>gọi x là v thật của cano như vậy ta có: (x#0) thì vận tốc cano lúc đi là sẽ là x+4va v sẽ là x - 4
T/g canô là (x#0) 40 /(x#4)
T/g cano AB là: 10/(x#)
Ta có p.t:
40/(x+10) + 2,25 = 32,25 (km)
Chú ý đổi xong òi đó 2 giờ 15 phút
Đ.s:....................
>3
1)
\(y=x-\sqrt{x-1991}=\left(\sqrt{x-1991}-\frac{1}{2}\right)^2+\frac{7963}{4}\ge\frac{7963}{4}\)
Dấu "=" xảy ra khi \(x=\frac{7965}{4}\)
2)
\(T=\frac{2a^2+4ab+5b^2}{a^2+b^2}=\frac{\left(a+2b\right)^2}{a^2+b^2}+1\ge1\)
Dấu "=" xảy ra khi a=-2b
\(T=\frac{2a^2+4ab+5b^2}{a^2+b^2}=-\frac{\left(2a-b\right)^2}{a^2+b^2}+6\le6\)
Dấu "=" xảy ra khi 2a=b
từ giả thiết \(\Rightarrow3xy=x+y+1\)
áp dụng bất đẳng thức Bunia ta có
\(3x^2+1\ge\frac{\left(3x+1\right)^2}{4}\Rightarrow\sqrt{3x^2+1}\ge\frac{\left(3x+1\right)}{2}\)
tương tự \(\Rightarrow\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3x+1}+\frac{2}{3y+1}\)
Mà \(\frac{2}{3x+1}+\frac{2}{3y+1}=\frac{6x+6y+4}{9xy+3x+3y+1}=\frac{6x+6y+4}{6x+6y+4}=1\)(Thế \(3xy=x+y+1\))
từ đây ta có dpcm
Ta có: \(\left(x+1\right)\left(y+1\right)=4xy\Rightarrow xy+x+y+1=4xy\Rightarrow3xy=x+y+1\)
Xét bất đẳng thức phụ \(3x^2+1\ge\frac{\left(3x+1\right)^2}{4}\)(*)
Thật vậy: (*)\(\Leftrightarrow12x^2+4-9x^2-6x-1\ge0\Leftrightarrow3x^2-6x+3\ge0\Leftrightarrow3\left(x-1\right)^2\ge0\)*đúng*
Do đó \(\sqrt{3x^2+1}\ge\frac{3x+1}{2}\Rightarrow\frac{1}{\sqrt{3x^2+1}}\le\frac{2}{3x+1}\)(1)
Tương tự, ta có: \(\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3y+1}\)(2)
Cộng theo vế hai bất đẳng thức (1) và (2), ta được: \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le\frac{2}{3x+1}+\frac{2}{3y+1}=\frac{6x+6y+4}{9xy+3x+3y+1}=\frac{6x+6y+4}{3\left(x+y+1\right)+3x+3y+1}=\frac{6x+6y+4}{6x+6y+4}=1\)Đẳng thức xảy ra khi x = y = 1
Bài 1
Từ giả thiết, bình phương 2 vế, ta được:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)
\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)
\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)
\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)
\(=2014\)
\(\Rightarrow A=\sqrt{2014}.\)
Bài 2:
Đặt \(\sqrt{2015}=a>0\)
\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)
Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)
\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)
\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)
Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)
Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)
Bài 3
Áp dụng bất đẳng thức Côsi
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)
Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)
ĐKXĐ : \(x\ge0;x\ne1\)
a ) \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{2\sqrt{x}}\)
\(A=\frac{1+\sqrt{x}+1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}:\frac{1+\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{1}{2\sqrt{x}}\)
\(A=\frac{2}{2\sqrt{x}}+\frac{1}{2\sqrt{x}}=\frac{3}{2\sqrt{x}}\)
b) \(x=6-2\sqrt{5}\Leftrightarrow x=5-2\sqrt{5}+1\Leftrightarrow x=\left(\sqrt{5}-1\right)^2\) ( Thỏa mãn ĐKXĐ )
Vậy tại \(x=\left(\sqrt{5}-1\right)^2\)thì giá trị biểu thức A là :
\(A=\frac{3}{2\sqrt{\left(\sqrt{5}-1\right)^2}}=\frac{3}{2\left(\sqrt{5}-1\right)}=\frac{3\left(\sqrt{5}+1\right)}{2.4}=\frac{3\sqrt{5}+3}{8}\)
a) \(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(-a+4\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(-a+4\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}-1\right)\left(-a+4\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(-a+4\right)\left(\sqrt{a}-2\right)}+\frac{\left(4\sqrt{a}-4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(4-a\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{-4a\sqrt{a}-8a+16\sqrt{a}+32}{\left(-a+4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{4\left(2+\sqrt{a}\right)\left(-a+4\right)}{\left(-a+4\right)\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{4\left(\sqrt{a}+2\right)}{a-4}\)
b) Với a = 9 thì
\(P=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\sqrt{9}+3}{\sqrt{9}-2}-\frac{\sqrt{9}-1}{\sqrt{9}+2}+\frac{4\sqrt{9}-4}{4-9}\)
\(=\frac{3+3}{3-2}-\frac{3-1}{3+2}+\frac{4\cdot3-4}{-5}\)
\(=6-\frac{2}{5}+\frac{12-4}{-5}\)
\(=6-\frac{2}{5}+\frac{8}{-5}\)
\(=6-\frac{2}{5}+\frac{-8}{5}\)
\(=\frac{30}{5}-\frac{2}{5}-\frac{8}{5}\)
\(=\frac{20}{5}=4\)