1. Cho biết 2 đại lượng x và y tỉ lệ thuận với nhau và khi x=6 thì y=4.
a) Tìm hệ số tỉ lệ k của y đối với x;
b) Hãy biểu diễn y theo x;
c) Tính giá trị của y khi x=9, x=15.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Delta ABC\) có AB=AC \(\Rightarrow\Delta ABC\) cân tại A \(\Rightarrow AD\perp BC\) (Trong tg cân phân giác đồng thời là đường cao và dường trung tuyến)
Xét tg vuông ADB và tg vuông ADC có
\(AB=AC;\widehat{BAD}=\widehat{CAD}\Rightarrow\Delta ADB=\Delta ADC\) (2 tg vuông có cạnh huyền và 1 góc nhọn = nhau thì 2 tg đó bằng nhau)
b/ Ta có Ay//BC \(\Rightarrow\widehat{yAC}=\widehat{ACB}\) (góc so le trong)
Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ACB}=\widehat{ABC}\)
\(\Rightarrow\widehat{yAC}=\widehat{ABC}\) (cùng \(=\widehat{ACB}\) )
c/ Ta có \(AD\perp BC;Cx\perp BC\) => AD//Cx (cùng vuông góc với BC)
d/ Ta có AD//Cx (cmt); Ay//BC => AKCD là hình bình hành
AC và DK là hai đường chéo hình bình hành AKCD => AC và DK cắt nhau tại trung điểm mỗi đường giả sử là điểm I'
=> I' là trung điểm của AC mà I cũng là trung điểm của AC => I trùng I'
=> I là trung điểm của DK
Gọi số cần tìm là : a ; b ; c
Ta có : \(\frac{a}{5}=\frac{b}{9};\frac{a}{10}=\frac{c}{7}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{18}=\frac{c}{7}\)
Ta gọi : \(\frac{a}{10};\frac{b}{18};\frac{c}{7}=k\)
Ta có :
a = 10k
b = 18k
c = 7k
BCNN (a;b;c) = k.10.9.7=630.k=3150
\(\Rightarrow k=5\)
a = 10 . 5 = 50
b = 5 . 18 = 90
c = 5 . 7 = 35
Vậy 3 số tự nhiên cần tìm là : 35 ; 50 và 90