K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2022

A B C E D P Q O H K I

1/ E và D cùng nhìn BC dưới 2 góc bằng nhau và bằng 90 độ nên E và D cùng nằm trên đường tròn đường kính BD

=> BCDE là tứ giác nội tiếp

Xét tg vuông ABD và tg vuông ACE có

\(\widehat{ABP}=\widehat{ACQ}\) (cùng phụ với \(\widehat{BAC}\) ) (1)

\(sđ\widehat{ABP}=\dfrac{1}{2}sđ\) cung AP (góc nội tiếp) (2)

\(sđ\widehat{ACQ}=\dfrac{1}{2}sđ\) cung AQ (góc nội tiếp) (3)

Từ (1) (2) (3) => sđ cung AP = sđ cung AQ

2/ 

Ta có 

\(sđ\widehat{ABP}=\dfrac{1}{2}sđ\) cung AP (góc nt) (1)

\(sđ\widehat{ABQ}=\dfrac{1}{2}sđ\) cung AQ (góc nt) (2)

Mà sđ cung AP = sđ cung AQ (cmt) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{ABP}=\widehat{ABQ}\) => BA là phân giác của \(\widehat{PBQ}\)

Mà \(AB\perp CQ\) => BA là đường cao của tg HBQ

=> tg HBQ cân tại B (trong tg đường phân giác đồng thời là đường cao thì tg đó là tg cân)

=> EQ=EH (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến) => E là trung điểm của HQ (đpcm)

Chứng minh tương tự ta cũng có D là trung điểm của HP

=> ED là đường trung bình của tg HPQ => ED//PQ

Nối AO cắt (O) tại K ta có

sđ cung AQK = sđ cung APK (nửa đường tròn)

sđ cung AQ = sđ cung AP (cmt)

=> sđ cung QBK = sđ cung PCK => KQ=KP (hai cung có số đo bằng nhau thì hai dây trương cung tương ứng có độ dài bằng nhau) => tg KPQ cân tại K

Ta có

\(sđ\widehat{AKQ}=\dfrac{1}{2}sđ\) cung AQ (góc nt)

\(sđ\widehat{AKP}=\dfrac{1}{2}sđ\) cung AP (góc nt)

Mà sđ cung AQ = sđ cung AP (cmt)

=> \(\widehat{AKQ}=\widehat{AKP}\) => AK là phân giác  \(\widehat{PKQ}\) của tg cân KPQ 

=> AK là đường cao của tg KPQ (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

\(\Rightarrow AK\perp PQ\Rightarrow OA\perp PQ\) mà DE//PQ (cmt) \(\Rightarrow OA\perp DE\) (đpcm)

3/ Ta có

Xét tg vuông ABD có

\(\widehat{ABD}=90^o-\widehat{CAB}=90^o-60^o=30^o\)

\(\Rightarrow AD=\dfrac{AB}{2}\) (trong tg vuông cạnh đối diện với góc \(30^o\) bằng nửa cạnh huyền)

C/m tương tự khi xét tg vuông ACE ta cũng có \(AE=\dfrac{AC}{2}\)

Ta có

\(sđ\widehat{ADB}=30^o=\dfrac{1}{2}sđ\) cung AP => sđ cung AP\(=60^o\) = sđ cung AQ

Gọi I là giao của AK với PQ ta có

tg KPQ cân tại K (cmt)

\(AK\perp PQ\) (cmt)

=> IQ=IP (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)

Xét tg vuông AQI có

\(sđ\widehat{AQI}=\dfrac{1}{2}sđ\) cung AP = \(30^o\Rightarrow AI=\dfrac{AQ}{2}\)  (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)

Ta có \(\widehat{AQK}=90^o\) (góc nt chắn nửa đường tròn)

Xét tg vuông AQK có

\(AQ^2=AI.AK=\dfrac{AQ}{2}.2R\Rightarrow AQ=R\Rightarrow AI=\dfrac{AQ}{2}=\dfrac{R}{2}\) 

\(\Rightarrow IK=AK-AI=2R-\dfrac{R}{2}=\dfrac{3R}{2}\)

Ta có

\(IQ^2=IA.IK\) (trong tg vuông bình phươn đường cạo hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow IQ^2=\dfrac{R}{2}.\dfrac{3R}{2}\Rightarrow IQ=\dfrac{R\sqrt{3}}{2}\)

Ta có 

IQ=IP (cmt) => PQ=2.IQ=\(R\sqrt{3}\)

Ta có ED là đường trung bình của tg HPQ (cmt)

\(\Rightarrow DE=\dfrac{PQ}{2}=\dfrac{R\sqrt{3}}{2}\)

Ta có

\(S_{ABC}=\dfrac{1}{2}.AB.AC.\sin\widehat{CAB}=\dfrac{1}{2}.AB.AC.\dfrac{\sqrt{3}}{2}=\dfrac{AB.AC.\sqrt{3}}{4}\)

\(S_{AED}=\dfrac{1}{2}.AD.AE.\sin\widehat{CAB}=\dfrac{1}{2}.\dfrac{AB}{2}.\dfrac{AC}{2}.\dfrac{\sqrt{3}}{2}=\dfrac{AB.AC.\sqrt{3}}{16}\)

\(\Rightarrow\dfrac{S_{AED}}{S_{ABC}}=\dfrac{1}{4}\)

Gọi R' là bán kính đường tròn ngoại tiếp tg AED

\(S_{AED}=\dfrac{AE.AD.DE}{4R'}=\dfrac{AC}{2}.\dfrac{AB}{2}.\dfrac{6\sqrt{3}}{2}.\dfrac{1}{4R'}=\dfrac{AB.AC.\sqrt{3}}{4}.\dfrac{3\sqrt{3}}{4R'}=\dfrac{S_{ABC}.3\sqrt{3}}{4R'}\)

   

\(\Rightarrow\dfrac{S_{AED}}{S_{ABC}}=\dfrac{3\sqrt{3}}{4R'}=\dfrac{1}{4}\Rightarrow R'=3\sqrt{3}\)

 

 

 

 

 

 

 

 

1)

ĐKXĐ: \(x\ge\dfrac{1}{4}\)

PT \(\Leftrightarrow\sqrt{4x^2+2x+2}-\sqrt{4x-1}+2x^2+3x-3=0\)

\(\Leftrightarrow\left(\sqrt{4x^2+2x+2}-2\right)-\left(\sqrt{4x-1}-1\right)+2x^2+3x-2=0\)

\(\Leftrightarrow\dfrac{4x^2+2x+2-4}{\sqrt{4x^2+2x+2}+2}-\dfrac{4x-1-1}{\sqrt{4x-1}+1}+\left(2x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\dfrac{4x^2+2x-2}{\sqrt{4x^2+2x+2}+2}-\dfrac{4x-2}{\sqrt{4x-1}+1}+\left(2x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\dfrac{2\left(2x-1\right)\left(x+1\right)}{\sqrt{4x^2+2x+2}+2}-\dfrac{2\left(2x-1\right)}{\sqrt{4x-1}+1}+\left(2x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(\dfrac{2x+2}{\sqrt{4x^2+2x+2}+2}-\dfrac{2}{\sqrt{4x-1}+1}+x+2\right)=0\)

Mà \(\dfrac{2x+2}{\sqrt{4x^2+2x+2}+2}>0\)

       \(\dfrac{2}{\sqrt{4x-1}+1}< 2\Leftrightarrow-\dfrac{2}{\sqrt{4x-1}+1}>-2\)

        \(x+2>2\)

=> \(\dfrac{2x+2}{\sqrt{4x^2+2x+2}+2}-\dfrac{2}{\sqrt{4x-1}+1}+x+2>0\)

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\left(TM\right)\)

KL: Vậy PT có nghiệm \(S=\left\{\dfrac{1}{2}\right\}\)

2)

BĐT \(\Leftrightarrow\left[\dfrac{a^3}{b+2c}+\dfrac{b+2c}{9}.a\right]+\left[\dfrac{b^3}{c+2a}+\dfrac{c+2a}{9}.b\right]+\left[\dfrac{c^3}{a+2b}+\dfrac{a+2b}{9}.c\right]-\dfrac{1}{3}.\left(ab+bc+ca\right)\ge1\)

Áp dụng BĐT Cosi cho 2 số không âm:

\(\dfrac{a^3}{b+2c}+\dfrac{b+2c}{9}.a\ge2.\sqrt{\dfrac{a^3}{b+2c}.\dfrac{b+2c}{9}.a}=\dfrac{2a^2}{3}\)

Tương tự \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^3}{c+2a}+\dfrac{c+2a}{9}.b\ge\dfrac{2b^2}{3}\\\dfrac{c^3}{a+2b}+\dfrac{a+2b}{9}.c\ge\dfrac{2c^2}{3}\end{matrix}\right.\)

\(VT\ge\dfrac{2}{3}\left(a^2+b^2+c^2\right)-1\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca=3\)

\(\Rightarrow VT\ge1\left(đpcm\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 6 2022

2. Sử dụng bất đẳng thức Cauchy-Schwarz:
\(LHS\ge\sum_{cyc}\dfrac{a^4}{ab+2ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{ab+bc+ca}{3}=\dfrac{3}{3}=1\)Vậy ta có điều phải chứng minh

1 tháng 6 2022

1. Khi $m=4$ thì phương trình trở thành $x^2-9x+20=0\Leftrightarrow (x-4)(x-5)=0$ hay $x=4$ hoặc $x=5$ là các nghiệm của phương trình.

2. Ta có \(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0\) nên phương trình luôn có 2 nghiệm phân biệt, hơn thế nữa ta có $x^2-(2m+1)x+m^2+m=0$ có 2 nghiệm là $x_1,x_2$ thì theo định lý Viete ta có $x_1+x_2=2m+1,x_1.x_2=m^2+m$, ta có $-17=(x_1+x_2)^2-7x_1.x_2=(2m+1)^2-7(m^2+m)$ hay $-3m^2-3m+18=0\Leftrightarrow 3(m+3)(m-2)=0$, vậy $m=2,m=-3$ là các giá trị cần tìm 

1 tháng 6 2022

\(\left\{{}\begin{matrix}\left(x^2-2x-9\right)\sqrt{x^2-x-6}=0\left(1\right)\\x+y=0\left(2\right)\end{matrix}\right.\)

ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-2\end{matrix}\right.\)

Từ (1) <=> \(\left[{}\begin{matrix}x^2-2x-9=0\left(\cdot\right)\\x^2-x-6=0\end{matrix}\right.\) (*) nghiệm không tm đk

<=> \(\left[{}\begin{matrix}x=3\left(I\right)\\x=-2\left(II\right)\end{matrix}\right.\) -> 

Từ (2) => y = -x 

(I) y = -3

(II) y = 2

Với x = 3 và y = -3 => P = 32 + (-3)2 + 2020 = 2038

với x = -2 và y = 2 => P = (-2)2 + 22 + 2020 = 2028

 

1 tháng 6 2022

cho mn hỏi là (*) tìm ra nghiệm là \(x=1-\sqrt{10}=-2,1622....\) và \(x=1+\sqrt{10}=4,1622.....\)

tại sao lại bị loại vậy (dựa vào ĐKXĐ kiểu j mà bị loại), mn ko rõ lắm

2 tháng 6 2022

Ta có số hạng tổng quát

\(\dfrac{1}{\left(n+1\right)\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}< \dfrac{\left(\sqrt{n+1}-\sqrt{n}\right).2.\sqrt{n+1}}{\left(n+1\right)\sqrt{n}}=\)

\(=\dfrac{2\left(n+1\right)-2\sqrt{\left(n+1\right)n}}{\left(n+1\right)\sqrt{n}}=\dfrac{2}{\sqrt{n}}-\dfrac{2}{\sqrt{n+1}}\)

Áp dụng vào bài toán

\(VT< \dfrac{2}{\sqrt{1}}-\dfrac{2}{\sqrt{2}}+\dfrac{2}{\sqrt{2}}-\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}-\dfrac{2}{\sqrt{4}}+...+\dfrac{2}{\sqrt{n}}-\dfrac{2}{\sqrt{n+1}}=\)

\(=2-\dfrac{2}{\sqrt{n+1}}< 2\)

2 tháng 6 2022

Xin lỗi

\(\dfrac{1}{\left(n+1\right)\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}< \dfrac{\left(\sqrt{n+1}-\sqrt{n}\right).2.\sqrt{n+1}}{\left(n+1\right)\sqrt{n}}\)

 

31 tháng 5 2022

\(\sqrt{1-\sqrt{x^4-x^2}}=x-1\)

\(\Leftrightarrow1-\sqrt{x^4-x^2}=\left(x-1\right)^2\)

\(\Leftrightarrow-\sqrt{x^4-x^2}=x^2-2x+1-1\)

\(\Leftrightarrow x^4-x^2=\left(x^2-2x\right)^2\)

\(\Leftrightarrow x^4-x^2=x^4-4x^3+4x^2\)

\(\Leftrightarrow4x^3-5x^2=0\)

\(\Leftrightarrow x^2\left(4x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\4x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{4}\end{matrix}\right.\)

31 tháng 5 2022

x=-căn bậc hai(17)/4-1/4, x=căn bậc hai(17)/4-1/4

 
29 tháng 8

làm sao để đc coin ạ?

 

30 tháng 5 2022

Homework is oftenly described as boring and challenging to many students. To be able to survive it, many ways have been suggested as followed. Firstly, pupils have to pay attention to teachers in classes. One of many reasons why homework is so difficult is that students don’t listen to their teachers, causing lack of knowledge required to finish homework; therefore, students will face multiple issues when doing their exercises. Secondly, students should try their best to focus when doing homework. Finishing homework require sitting down, which is considered boring to many kids. Picking a quite place to study and balancing the amount of time resting and working can greatly improve one’s concentration. Finally, youngster need to understand that homework is given for their own good. Doing homework not only will strengthen your knowledge, but also give you a brighter future. In conclusion, despite the fact that homework is a great trouble to many students, every kid should try their best to finish them.

30 tháng 5 2022

Everyone has their own study habits which are suitable to their routines. Personally, I have to go to school in the morning on weekdays, therefore, I spend the afternoon doing the homework. At night, after eating dinner, I often relax for a while by surfing Facebook or Youtube, and then come back to my desk. If the homework is completed, I normally practice some extra English exercises. My mother has bought several English learning books for me. On Monday and Tuesday, I have an extra course in Mathematics, so I’m a little bit busy those days. In addition, being interested in editing videos, I usually spend my free time watching videos on Youtube about this topic and practicing it myself. 

30 tháng 5 2022

Ta phản chứng rằng không tồn tại 2 số nào bằng nhau trong 25 số trên, đồng nghĩa với 25 số trên là phân biệt, ta sắp xếp chúng theo thứ tự $a_1<a_2<...<a_25$, có thể thấy rằng, bộ số $1,2,...25$ chính là bộ số mà giá trị của vế trái lớn nhất, nhưng giá trị lúc này có thể tính được là xấp xỉ 8,6<9 nên không thỏa mãn, các bộ số khác hiển nhiên cũng sẽ khiến vế trái nhỏ hơn 9, vậy không tồn tại bộ số nào thỏa mãn nếu chúng phân biệt, ta có điều phải chứng minh

30 tháng 5 2022

vvv

27 tháng 5 2022

Chọn vật 3 là đất, vật 2 là ô tô A, vật 1 là ô tô B.

Áp dụng công thức cộng vận tốc, vận tốc của B so với A là:

Do hai xe chạy cùng chiều, nên chiếu các vecto vận tốc lên phương chuyển động.

v12 = v13 – v23 = 60 – 45 = 15 km/h.

Vận tốc của A so với B là: v21 = v23 – v31 = 45 – 60 = - 15 km/h.

27 tháng 5 2022

15