tìm tất cả các cặp số nguyên dương x,y với x,y nguyên tố cùng nhau và thỏa mãn phương trình 2*(x3 - x)= y3 - y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3+3x+3-6x+3x^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)
\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)
Thay vào ta tính được:
\(A=\left[f\left(\frac{1}{2020}\right)+f\left(\frac{2019}{2020}\right)\right]+...+\left[f\left(\frac{1009}{2020}\right)+f\left(\frac{1011}{2020}\right)\right]+f\left(\frac{1010}{2020}\right)\)
\(A=1+...+1+f\left(\frac{1010}{2020}\right)\) (với 1009 số 1)
\(A=1009+f\left(\frac{1}{2}\right)=1009+\frac{\left(\frac{1}{2}\right)^3}{1-3\cdot\frac{1}{2}+3\cdot\left(\frac{1}{2}\right)^2}\)
\(A=1009+\frac{1}{2}=\frac{2019}{2}\)
Vậy \(A=\frac{2019}{2}\)
\(ĐK:x\inℝ\)
\(\sqrt{5x^2+6x+5}=\frac{64x^3+4x}{5x^2+6x+6}\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}-4=\frac{64x^3+4x}{5x^2+6x+6}-4\)
\(\Leftrightarrow\frac{5x^2+6x-11}{\sqrt{5x^2+6x+5}+4}=\frac{64x^3-20x^2-20x-24}{5x^2+6x+6}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(5x+11\right)}{\sqrt{5x^2+6x+5}+4}=\frac{4\left(x-1\right)\left(16x^2+11x+6\right)}{5x^2+6x+6}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{5x+11}{\sqrt{5x^2+6x+5}+4}-\frac{64x^2+44x+24}{5x^2+6x+6}\right)=0\)
Suy ra x - 1 = 0 hay x = 1
Vậy phương trình có 1 nghiệm thực duy nhất là 1
moijhsdhwodheufidwaspodjifhifhhhdhisdadpeirfiehfhei'HIEODOIDIOHFDEEF'Ềf;huewhrfeur ruEHR655FREW RTFEWYFYWEYDywjKHHFFHEHFEHDFHE HFJEHF JFHEJHFJEHJEHNDJEHFNC HFJHFJCFJEDSACNASJBJBVGJFHJHFJKHFJKSJDHFJSDHFJK BNDMFJKDHCFJDKCNJDSCASKNMDKFJSGVBFAJBHCFJKSDBV JSDBCFHJKSBCFSA BFHSDBVHJSDGBH BSDHVBHSDSDJHSDBVHJSFV DBHJSDBVJHSD JVDBCFĐ HVDSVHDSVJDHCFDCFBSDGFGFGFGCFCCFCCFGCVGCFGCF TIENG ANH DAY
a Để hàm số y đồng biến trên R
thì k2+2/k-3 > 0 đk k khác 3
mà k2+2>0 thì k-3 > 0 suy ra k>3
b Để hàm số Y đồng biến trên R
thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2